On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 391-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper all groups are finite. Let $A$ be a group of automorphisms of a group $G$ that contains all inner automorphisms of $G$ and $F$ be the canonical local definition of a saturated formation $\mathfrak{F}$. An $A$-composition factor $H/K$ of $G$ is called $A$-$\mathfrak{F}$-central if $A/C_A(H/K)\in F(p)$ for all $p\in\pi(H/K)$. The $A$-$\mathfrak{F}$-hypercenter of $G$ is the largest $A$-admissible subgroup of $G$ such that all its $A$-composition factors are $A$-$\mathfrak{F}$-central. Denoted by $\mathrm{Z}_\mathfrak{F}(G, A)$. Recall that a group $G$ satisfies the Sylow tower property if $G$ has a normal Hall $\{p_1,\dots, p_i\}$-subgroup for all $1\leq i\leq n$ where $p_1>\dots>p_n$ are all prime divisors of $|G|$. The main result of this paper is: Let $\mathfrak{F}$ be a hereditary saturated formation, $F$ be its canonical local definition and $N$ be an $A$-admissible subgroup of a group $G$ where $\mathrm{Inn}\,G\leq A\leq \mathrm{Aut}\,G$ that satisfies the Sylow tower property. Then $N\leq\mathrm{Z}_\mathfrak{F}(G, A)$ if and only if $N_A(P)/C_A(P)\in F(p)$ for all Sylow $p$-subgroups $P$ of $N$ and every prime divisor $p$ of $|N|$. As corollaries we obtained well known results of R. Baer about normal subgroups in the supersoluble hypercenter and elements in the hypercenter. Let $G$ be a group. Recall that $L_n(G)=\{ x\in G\,\,| \,\,[x, \alpha_1,\dots, \alpha_n]=1 \,\,\forall \alpha_1,\dots, \alpha_n\in\mathrm{Aut}\,G\}$ and $G$ is called autonilpotent if $G=L_n(G)$ for some natural $n$. The criteria of autonilpotency of a group also follow from the main result. In particular, a group $G$ is autonilpotent if and only if it is the direct product of its Sylow subgroups and the automorphism group of a Sylow $p$-subgroup of $G$ is a $p$-group for all prime divisors $p$ of $|G|$. Examples of odd order autonilpotent groups were given.
Keywords: Finite group, nilpotent group, supersoluble group, autonilpotent group, $A$-$\mathfrak{F}$-hypercenter of a group, hereditary saturated formation.
@article{CHEB_2019_20_2_a30,
     author = {V. I. Murashka},
     title = {On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {391--398},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/}
}
TY  - JOUR
AU  - V. I. Murashka
TI  - On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 391
EP  - 398
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/
LA  - en
ID  - CHEB_2019_20_2_a30
ER  - 
%0 Journal Article
%A V. I. Murashka
%T On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups
%J Čebyševskij sbornik
%D 2019
%P 391-398
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/
%G en
%F CHEB_2019_20_2_a30
V. I. Murashka. On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 391-398. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/

[1] Kaloujnine L., “Über gewisse Beziehungen zwischen einer Gruppe und ihren Auto- morphismen”, Berliner Mathematische Tagung, Berlin, 1953, 164–172 | MR | Zbl

[2] Hall P., “Some sufficient conditions for a group to be nilpotent”, Illinois J. Math., 2:4 (1958), 787–801 | MR | Zbl

[3] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60:4 (1954), 409–434 | MR | Zbl

[4] L. A. Semetkov, “Graduated formations of groups”, Mathematics of the USSR-Sbornik, 23:4 (1974), 593–611 | MR | Zbl

[5] Schmid P., “Lokale Formationen endllcher Gruppen”, Math. Z., 137:1 (1974), 31–48 | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[7] P. V. Hegarty, “The absolute center of a group”, J. Algebra, 169 (1994), 929–935 | MR | Zbl

[8] M. M. Nasrabadi, A. Gholamiam, “On A-nilpotent abelian groups”, Proc. Indian Acad. Sci. (Math. Sci.), 124:4 (2014), 517–525 | MR | Zbl

[9] S. Davoudirad, M. R. R. Moghaddam, M. A. Rostamyari, “Autonilpotent groups and their properties”, Asian-European J. Math., 9:2 (2016), 1650056, 7 pp. | MR | Zbl

[10] S. Hoseini, M. R. R. Moghaddam, S. Tajnia, “On Auto-nipoltent groups”, Southeast Asian Bull. Math., 39 (2015), 219–224 | MR | Zbl

[11] H. Arora, R. Karan, “On Autonilpotent and Autosoluble Groups”, Note Mat., 38:1 (2018), 35–45 | MR

[12] A. F. Vasil'ev, T. I. Vasil'eva, V. N. Tyutyanov, “On the finite groups of supersoluble type”, Sib. Math. J., 51:6 (2010), 1004–1012 | MR | Zbl

[13] V. S. Monakhov, V. N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal subgroups”, Ricerche mat., 62 (2013), 307–322 | MR | Zbl

[14] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202 (1989), 545–557 | MR | Zbl

[15] V. A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | MR | Zbl

[16] V. I. Murashka, “On analogues of Baer's theorems for widely supersoluble hypercenter of finite groups”, Asian-European J. Math., 11:3 (2018), 1850043, 8 pp. | MR | Zbl

[17] V. I. Murashka, “Properties of the class of finite groups with P-subnormal cyclic primary subgroups”, Dokl. NAN Belarusi, 58:1 (2014), 5–8 (In Russian) | MR

[18] R. Baer, “Supersoluble immersion”, Canad. J. Math., 11 (1959), 353–369 | MR | Zbl

[19] M. J. Curran, “Automorphisms of certain $p$-groups ($p$ odd)”, Bull. Austral. Math. Soc., 38 (1988), 299–305 | MR | Zbl

[20] Groups, Algorithms, and Programming (GAP), Version 4.9.1., (accessed 10 June 2018) http://www.gap-system.org

[21] R. Baer, “Group Elements of Prime Power Index”, Trans. Amer. Math Soc., 75:1 (1953), 20–47 | MR | Zbl

[22] I. M. Isaacs, Finite group theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008, 350 pp. | MR | Zbl

[23] A. N. Skiba, “On the $\mathfrak{F}$-hypercenter and the intersection of all $\mathfrak{F}$-maximal subgroups of a finite group”, J. Pure Appl. Algebra, 216:4 (2012), 789–799 | MR | Zbl

[24] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978, 272 pp. (In Russian) | MR

[25] J. N. S. Bidwell, M. J. Curran, D. J. McCaughan, “Automorphisms of direct products of finite groups”, Arch. Math., 86 (2006), 481–489 | MR | Zbl