Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a30, author = {V. I. Murashka}, title = {On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {391--398}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/} }
TY - JOUR AU - V. I. Murashka TI - On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups JO - Čebyševskij sbornik PY - 2019 SP - 391 EP - 398 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/ LA - en ID - CHEB_2019_20_2_a30 ER -
V. I. Murashka. On the $\mathfrak{F}$-hypercentral subgroups with the sylow tower property of finite groups. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 391-398. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a30/
[1] Kaloujnine L., “Über gewisse Beziehungen zwischen einer Gruppe und ihren Auto- morphismen”, Berliner Mathematische Tagung, Berlin, 1953, 164–172 | MR | Zbl
[2] Hall P., “Some sufficient conditions for a group to be nilpotent”, Illinois J. Math., 2:4 (1958), 787–801 | MR | Zbl
[3] Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60:4 (1954), 409–434 | MR | Zbl
[4] L. A. Semetkov, “Graduated formations of groups”, Mathematics of the USSR-Sbornik, 23:4 (1974), 593–611 | MR | Zbl
[5] Schmid P., “Lokale Formationen endllcher Gruppen”, Math. Z., 137:1 (1974), 31–48 | MR | Zbl
[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR
[7] P. V. Hegarty, “The absolute center of a group”, J. Algebra, 169 (1994), 929–935 | MR | Zbl
[8] M. M. Nasrabadi, A. Gholamiam, “On A-nilpotent abelian groups”, Proc. Indian Acad. Sci. (Math. Sci.), 124:4 (2014), 517–525 | MR | Zbl
[9] S. Davoudirad, M. R. R. Moghaddam, M. A. Rostamyari, “Autonilpotent groups and their properties”, Asian-European J. Math., 9:2 (2016), 1650056, 7 pp. | MR | Zbl
[10] S. Hoseini, M. R. R. Moghaddam, S. Tajnia, “On Auto-nipoltent groups”, Southeast Asian Bull. Math., 39 (2015), 219–224 | MR | Zbl
[11] H. Arora, R. Karan, “On Autonilpotent and Autosoluble Groups”, Note Mat., 38:1 (2018), 35–45 | MR
[12] A. F. Vasil'ev, T. I. Vasil'eva, V. N. Tyutyanov, “On the finite groups of supersoluble type”, Sib. Math. J., 51:6 (2010), 1004–1012 | MR | Zbl
[13] V. S. Monakhov, V. N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal subgroups”, Ricerche mat., 62 (2013), 307–322 | MR | Zbl
[14] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202 (1989), 545–557 | MR | Zbl
[15] V. A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | MR | Zbl
[16] V. I. Murashka, “On analogues of Baer's theorems for widely supersoluble hypercenter of finite groups”, Asian-European J. Math., 11:3 (2018), 1850043, 8 pp. | MR | Zbl
[17] V. I. Murashka, “Properties of the class of finite groups with P-subnormal cyclic primary subgroups”, Dokl. NAN Belarusi, 58:1 (2014), 5–8 (In Russian) | MR
[18] R. Baer, “Supersoluble immersion”, Canad. J. Math., 11 (1959), 353–369 | MR | Zbl
[19] M. J. Curran, “Automorphisms of certain $p$-groups ($p$ odd)”, Bull. Austral. Math. Soc., 38 (1988), 299–305 | MR | Zbl
[20] Groups, Algorithms, and Programming (GAP), Version 4.9.1., (accessed 10 June 2018) http://www.gap-system.org
[21] R. Baer, “Group Elements of Prime Power Index”, Trans. Amer. Math Soc., 75:1 (1953), 20–47 | MR | Zbl
[22] I. M. Isaacs, Finite group theory, Graduate studies in mathematics, 92, American Mathematical Society, Providence, 2008, 350 pp. | MR | Zbl
[23] A. N. Skiba, “On the $\mathfrak{F}$-hypercenter and the intersection of all $\mathfrak{F}$-maximal subgroups of a finite group”, J. Pure Appl. Algebra, 216:4 (2012), 789–799 | MR | Zbl
[24] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978, 272 pp. (In Russian) | MR
[25] J. N. S. Bidwell, M. J. Curran, D. J. McCaughan, “Automorphisms of direct products of finite groups”, Arch. Math., 86 (2006), 481–489 | MR | Zbl