Properties of elements of direct products of fields
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 383-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes certain arithmetic properties of values of $F$-series, i.e. of series of the form \begin{equation} \nonumber \sum_{n=0}^\infty a_n \cdot n! \; z^n. \end{equation} Here $a_n\in\mathbb K$, a certain algebraic number field of a finite degree over $\mathbb Q$. The maximum of the absolute values of the conjugates to $a_n$ doesn't exceed $e^{C_1 n}$. Also there exists a sequence of rational integers $d_n = d_{0,n} q^n$, $q\in\mathbb N$, $n=0,1,\ldots$ such that $d_n a_k\in\mathbb Z_{\mathbb K}$, $n=0,1,\ldots$, $k=0,1,\ldots,n$. Meanwhile $d_{0,n}$ is divisible only by primes $p$, $p\leqslant C_2 n$ and \begin{equation} \nonumber ord_p d_{0,n} \leqslant C_3\left(\log_p^n + \frac{n}{p^2}\right). \end{equation} Some general theorem is proved in analogy to Salikhov's theorem for the $E$-functions. It gives conditions of the algebraic independence over $\mathbb C(z)$ of a set of $F$-series, each being a solution of a linear differential equation of the first order. Certain applications to hypergeometric series are given. The results allow to apply general theorems after V.G. Chirskii on the atrithmetic properties of the values of $F$-series. The result is that the values of the considered series at algebraic points, as well as at polyadic points, which are well approximable by rational integers, are infinitely algebraically independent. The paper also mentions some applications of polyadic and almost polyadic numbers to some practical problems.
Keywords: $F$ – series, infinite algebraic independence, polyadic numbers.
@article{CHEB_2019_20_2_a29,
     author = {V. Yu. Matveev},
     title = {Properties of elements of direct products of fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {383--390},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a29/}
}
TY  - JOUR
AU  - V. Yu. Matveev
TI  - Properties of elements of direct products of fields
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 383
EP  - 390
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a29/
LA  - ru
ID  - CHEB_2019_20_2_a29
ER  - 
%0 Journal Article
%A V. Yu. Matveev
%T Properties of elements of direct products of fields
%J Čebyševskij sbornik
%D 2019
%P 383-390
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a29/
%G ru
%F CHEB_2019_20_2_a29
V. Yu. Matveev. Properties of elements of direct products of fields. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a29/

[1] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR

[2] A. B. Shidlovskii, Transtsendentnye chisla, "Nauka", M., 1987, 417 pp. | MR

[3] V. G. Chirskii, “O netrivialnykh globalnykh sootnosheniyakh”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1989, no. 5, 33–36 | Zbl

[4] V. G. Chirskii, “Ob arifmeticheskikh svoistvakh znachenii gipergeometricheskikh funktsii”, Mat. zametki, 52:2 (1992), 125–131 | MR | Zbl

[5] V. G. Chirskii, “Otsenki mnogochlenov i lineinykh form v pryamykh proizvedeniyakh polei”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1994, no. 4, 35–39 | MR | Zbl

[6] V. G. Chirskii, “O globalnykh sootnosheniyakh dlya gipergeometricheskikh ryadov”, Trudy semin. im. I. G. Petrovskogo, 18, 1995, 204–212

[7] V. G. Chirskii, “O lineinykh globalnykh sootnosheniyakh”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1998, no. 4, 70–72 | MR

[8] V. G. Chirskii, R. F. Shakirov, “O predstavlenii naturalnykh chisel s ispolzovaniem neskolkikh osnovanii”, Chebyshevskii sbornik, 2013, no. 1

[9] V. G. Chirskii, “On the arithmetic properties of polyadic integers”, International Mathematical Forum, 8:37 (2013), 1793–1796 | MR | Zbl

[10] V. G. Chirskii, “Arifmeticheskie svoistva tselykh poliadicheskikh chisel”, Chebyshevskii sbornik, 16:1 (2015), 254–264 | MR | Zbl

[11] V. G. Chirskii, “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Doklady Akademii nauk, matematika, 439:6 (2014), 677–679

[12] V. G. Chirskii, “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh $F$-ryadov”, Doklady Akademii Nauk, ser. Matem., 483:3 (2018), 257–259 ; Doklady math., 98:3, 589–591 | Zbl

[13] V. G. Chirskii, “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izvestiya RAN, 81:2 (2017), 215–232 ; Izvestiya Math., 81:2, 444–461 | MR | Zbl

[14] Chirskii V. G., “Product forrmula, global relations snd polyadic numbers”, Russian Journal of Mathematical Physics, 26:3 (2019), 286–305 | MR | Zbl

[15] V. G. Chirskii, “Topical problems of the theory of transcendental numbers: Developments of approach to their solutions in the works of Yu. V. Nesterenko”, Russian Journal of Mathematical Physics, 24:2 (2017), 153–171 | MR | Zbl

[16] Izv. Math., 78:6 (2014), 1244–1260 | MR | Zbl

[17] Moscow University Mathematics Bulletin, 70:1 (2015), 41–43 | MR | Zbl

[18] “Representations of positive integers”, Moscow University Mathematics Bulletin, 68:6 (2013), 307–308 | MR | Zbl

[19] V. G. Chirskii, V. Yu. Matveev, “O ryade iz proizvedenii chlenov arifmeticheskoi progressii”, Prepodavatel 21 vek, 2013, no. 4

[20] V. G. Chirskii, V. Yu. Matveev, “O predstavleniyakh naturalnykh chisel”, Chebyshevskii sbornik, 14:1(45) (2013), 91–101 | MR

[21] V. G. Chirskii, V. Yu. Matveev, “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshevskii sbornik, 14:2(46) (2013), 163–171 | MR

[22] V. Yu. Matveev, “O znacheniyakh nekotorogo ryada v poliadicheskikh tochkakh, khorosho priblizhaemykh naturalnymi chislami”, Prepodavatel 21 vek, 2013, no. 4

[23] V. Yu. Matveev, “Algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh ryadov”, Chebyshevskii sbornik, 16:3 (2015), 339–354 | MR | Zbl

[24] V. Yu. Matveev, “Algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh ryadov”, Chebyshevskii sbornik, 17:3 (2016), 156–167

[25] V. Yu. Matveev, “O beskonechnoi algebraicheskoi nezavisimosti nekotorykh poliadicheskikh chisel”, Materialy mezhdunarodnoi konferentsii «Matematika i informatika» (Moskva, 13–17 marta 2016 goda), 125–126

[26] T. R. Azamatov, “Effektivnye otsenki dlya obobschennykh globalnykh sootnoshenii”, UMN, 62:5(377) (2007), 145–146 | MR | Zbl