Arithmetic properties of series of some classes
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 374-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies properties of Liouvillean numbers in $p$-adic, $g$-adic, polyadic domains. The canonical representation of $p$-adic integer is $$ \sum\limits_{n=0}^\infty a_n p^n, \quad a_n\in\{0,1,\ldots, p-1\}. $$ For a $g$-adic integer it is of the form $$ \sum\limits_{n=0}^\infty a_n g^n, \quad a_n\in\{0,1,\ldots, g-1\}. $$ Polyadic integers are of the form $$ \sum\limits_{n=0}^\infty a_n n!, \quad a_n\in\{0,1,\ldots, n\}. $$The main purpose of this work is to estimate from below the correspponding norm of the elements, which is the result of substitution of $p$-adic, $g$-adic or polyadic integers for the variables into a non-zero polynomial with integer coefficients.Therefore, in the case of polyadic integers, we prove the global transcendence and global algebraic independence.Note that when we evaluate the usual absolute value of the considered polynomial, the main difficulty arises to prove the nonvanishing of this polynomial at the approximating point.In $p$-adic, $g$-adic, polyadic cases we avoid it using a well known algebraic lemma on the values of roots of the polynomial.Besides the paper gives some generalization of a theorem by P. Erdös on representation of real number as a sum of two Liouvillean numbers to the cases of $p$-adic, $g$-adic and polyadic numbers.
Keywords: $p$-adic integer, $g$-adic integer, polyadic integer, estimates of polynomials.
@article{CHEB_2019_20_2_a28,
     author = {E. S. Krupitsin},
     title = {Arithmetic properties of series of some classes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {374--382},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/}
}
TY  - JOUR
AU  - E. S. Krupitsin
TI  - Arithmetic properties of series of some classes
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 374
EP  - 382
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/
LA  - ru
ID  - CHEB_2019_20_2_a28
ER  - 
%0 Journal Article
%A E. S. Krupitsin
%T Arithmetic properties of series of some classes
%J Čebyševskij sbornik
%D 2019
%P 374-382
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/
%G ru
%F CHEB_2019_20_2_a28
E. S. Krupitsin. Arithmetic properties of series of some classes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 374-382. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/

[1] J. Liouville, “Sur des classes tres etendues de quantities don't la valeur n'est ni algebriques, ni meme reductible a des irrationelles algebriques”, C.R. Acad. Sci. Paris, Ser. A, 18, 883–885

[2] P. L. Cijsow, Transcendental measures, Doctoral Dissertation, Univ. Amsterdam, 1972 | Zbl

[3] V. G. Chirskii, “Topical problems of the theory of Transcendental numbers: Developments of approaches to tyeir solutions in the works of Yu.V. Nesterenko”, Russian Journal of Mathematical Physics, 24:2 (2017), 153–171 | MR | Zbl

[4] V. G. Chirskii, D. Bertrand, J. Yebbou, “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | MR | Zbl

[5] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Izvestiya Mathematics, 81:2 (2017), 215–232 | MR | Zbl

[6] V. G. Chirskii, “On series that are algebraically independent in all local fields”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 1978, no. 3, 29–34 | Zbl

[7] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Doklady Mathematics, 459:6 (2014), 677–679 | Zbl

[8] V. G. Chirskii, “On the arithmetic properties of generalized hypergeometric series with irrational parameters”, Izvestiya Mathematics, 786:6 (2014), 193–210

[9] V. G. Chirskii, “On the arithmetic properties of the Euler series”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 2015, no. 1, 59–61 | Zbl

[10] V. G. Chirskii, “Estimates of linear forms and polynomials from sets of polyadic numbers”, Chebushevskii sb., 12:4 (2011), 129–134 | MR

[11] V. G. Chirskii, “Arithmetic properties of some polyadic series”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 2012, no. 5, 52–54 | MR | Zbl

[12] V. G. Chirskii, “Polyadic estimates for $F$-series”, Chebushevskii sb., 13:2 (2012), 131–136 | MR

[13] V. G. Chirskii, “Arithmetic properties of generalized hypergeometric $F$-series”, Reports of the Academy of Sciences, 483:3 (2018), 257–259

[14] V. G. Chirskii, “Product Formula, Global Relations and Polyadic Numbers”, Russian Journal of Math. Physics, 26:3 (2019), 286–305 | MR | Zbl

[15] E. S. Krupitsyn, “Estimation of a polynomial from a polyadic Liouville number”, Materials of the international scientific conference «Actual problems of applied mathematics and physics», 2017, 113–114

[16] E. S. Krupitsyn, “Estimates of polynomials in a Liovillean polyadic integer”, Chebushevskii sb., 18:4 (2017) | MR | Zbl

[17] V. G. Chirskii, E. S. Krupitsyn, “Estimates of polynomials in some polyadic numbers”, Teacher of the XXI century, 2012, no. 4, 217–224

[18] V. G. Chirskii, “On series that are algebraically independent in all local fields”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 1994, no. 3, 93–95 | MR | Zbl

[19] K. Mahler, $p$-adic numbers, their functions, Cambridge University Press, London, 1981 | MR | Zbl