Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a28, author = {E. S. Krupitsin}, title = {Arithmetic properties of series of some classes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {374--382}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/} }
E. S. Krupitsin. Arithmetic properties of series of some classes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 374-382. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a28/
[1] J. Liouville, “Sur des classes tres etendues de quantities don't la valeur n'est ni algebriques, ni meme reductible a des irrationelles algebriques”, C.R. Acad. Sci. Paris, Ser. A, 18, 883–885
[2] P. L. Cijsow, Transcendental measures, Doctoral Dissertation, Univ. Amsterdam, 1972 | Zbl
[3] V. G. Chirskii, “Topical problems of the theory of Transcendental numbers: Developments of approaches to tyeir solutions in the works of Yu.V. Nesterenko”, Russian Journal of Mathematical Physics, 24:2 (2017), 153–171 | MR | Zbl
[4] V. G. Chirskii, D. Bertrand, J. Yebbou, “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | MR | Zbl
[5] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Izvestiya Mathematics, 81:2 (2017), 215–232 | MR | Zbl
[6] V. G. Chirskii, “On series that are algebraically independent in all local fields”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 1978, no. 3, 29–34 | Zbl
[7] V. G. Chirskii, “Arithmetic properties of polyadic series with periodic coefficients”, Doklady Mathematics, 459:6 (2014), 677–679 | Zbl
[8] V. G. Chirskii, “On the arithmetic properties of generalized hypergeometric series with irrational parameters”, Izvestiya Mathematics, 786:6 (2014), 193–210
[9] V. G. Chirskii, “On the arithmetic properties of the Euler series”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 2015, no. 1, 59–61 | Zbl
[10] V. G. Chirskii, “Estimates of linear forms and polynomials from sets of polyadic numbers”, Chebushevskii sb., 12:4 (2011), 129–134 | MR
[11] V. G. Chirskii, “Arithmetic properties of some polyadic series”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 2012, no. 5, 52–54 | MR | Zbl
[12] V. G. Chirskii, “Polyadic estimates for $F$-series”, Chebushevskii sb., 13:2 (2012), 131–136 | MR
[13] V. G. Chirskii, “Arithmetic properties of generalized hypergeometric $F$-series”, Reports of the Academy of Sciences, 483:3 (2018), 257–259
[14] V. G. Chirskii, “Product Formula, Global Relations and Polyadic Numbers”, Russian Journal of Math. Physics, 26:3 (2019), 286–305 | MR | Zbl
[15] E. S. Krupitsyn, “Estimation of a polynomial from a polyadic Liouville number”, Materials of the international scientific conference «Actual problems of applied mathematics and physics», 2017, 113–114
[16] E. S. Krupitsyn, “Estimates of polynomials in a Liovillean polyadic integer”, Chebushevskii sb., 18:4 (2017) | MR | Zbl
[17] V. G. Chirskii, E. S. Krupitsyn, “Estimates of polynomials in some polyadic numbers”, Teacher of the XXI century, 2012, no. 4, 217–224
[18] V. G. Chirskii, “On series that are algebraically independent in all local fields”, Vestn. Moscow. University. Ser. 1, Math., Mechan., 1994, no. 3, 93–95 | MR | Zbl
[19] K. Mahler, $p$-adic numbers, their functions, Cambridge University Press, London, 1981 | MR | Zbl