Approximation of quadratic algebraic lattices by integer lattices
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 366-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the approximation of a quadratic algebraic lattice by an integer lattice. It calculates the distances between a quadratic algebraic lattice and an integer lattice when they are given by the numerator and denominator of a suitable fraction to the square root of a Prime $p$ of the form $p=2$ or $p=4k+3$. The results of this work allow us to study questions about the best approximations of quadratic algebraic lattices by integer lattices.
Keywords: quadratic fields, approximation of algebraic lattices, metric space of lattices.
@article{CHEB_2019_20_2_a27,
     author = {A. N. Kormacheva},
     title = {Approximation of quadratic algebraic lattices by integer lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {366--373},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/}
}
TY  - JOUR
AU  - A. N. Kormacheva
TI  - Approximation of quadratic algebraic lattices by integer lattices
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 366
EP  - 373
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/
LA  - ru
ID  - CHEB_2019_20_2_a27
ER  - 
%0 Journal Article
%A A. N. Kormacheva
%T Approximation of quadratic algebraic lattices by integer lattices
%J Čebyševskij sbornik
%D 2019
%P 366-373
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/
%G ru
%F CHEB_2019_20_2_a27
A. N. Kormacheva. Approximation of quadratic algebraic lattices by integer lattices. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 366-373. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/

[1] Vronskaya G. T., Dobrovol'skii N. N., Deviations of flat grids, monograph, ed. N. M. Dobrovol'skii, Tula, 2012

[2] Davenport H., The higher arithmetic, Nauka, M., 1965, 176 pp.

[3] Kassels D., Introduction to the geometry of numbers, Mir, M., Russia, 1965 | MR

[4] Kormacheva A. N., “About the partial quotients of one of the continued fractions”, Chebyshevskii sbornik, 20:1 (2019), 293–301

[5] Mikhlyaeva A. V., “Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets”, Chebyshevskii sbornik, 19:3 (2018), 241–256 | Zbl

[6] Mikhlyaeva A. V., “Quality function for the approximation of quadratic algebraic nets”, Chebyshevskii sbornik, 20:1 (2019), 302–307