Approximation of quadratic algebraic lattices by integer lattices
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 366-373
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the approximation of a quadratic algebraic lattice by an integer lattice. It calculates the distances between a quadratic algebraic lattice and an integer lattice when they are given by the numerator and denominator of a suitable fraction to the square root of a Prime $p$ of the form $p=2$ or $p=4k+3$. The results of this work allow us to study questions about the best approximations of quadratic algebraic lattices by integer lattices.
Keywords:
quadratic fields, approximation of algebraic lattices, metric space of lattices.
@article{CHEB_2019_20_2_a27,
author = {A. N. Kormacheva},
title = {Approximation of quadratic algebraic lattices by integer lattices},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {366--373},
year = {2019},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/}
}
A. N. Kormacheva. Approximation of quadratic algebraic lattices by integer lattices. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 366-373. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a27/
[1] Vronskaya G. T., Dobrovol'skii N. N., Deviations of flat grids, monograph, ed. N. M. Dobrovol'skii, Tula, 2012
[2] Davenport H., The higher arithmetic, Nauka, M., 1965, 176 pp.
[3] Kassels D., Introduction to the geometry of numbers, Mir, M., Russia, 1965 | MR
[4] Kormacheva A. N., “About the partial quotients of one of the continued fractions”, Chebyshevskii sbornik, 20:1 (2019), 293–301
[5] Mikhlyaeva A. V., “Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets”, Chebyshevskii sbornik, 19:3 (2018), 241–256 | Zbl
[6] Mikhlyaeva A. V., “Quality function for the approximation of quadratic algebraic nets”, Chebyshevskii sbornik, 20:1 (2019), 302–307