Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a26, author = {M. Sh. Shabozov and M. O. Akobirshoev}, title = {About {Kolmogorov} type of inequalities for periodic functions of two variables in $L_2$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {348--365}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/} }
TY - JOUR AU - M. Sh. Shabozov AU - M. O. Akobirshoev TI - About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$ JO - Čebyševskij sbornik PY - 2019 SP - 348 EP - 365 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/ LA - ru ID - CHEB_2019_20_2_a26 ER -
M. Sh. Shabozov; M. O. Akobirshoev. About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 348-365. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/
[1] A. N. Kolmogorov, “On inequalities between the upper bounds of the successive derivatives of an arbitrary function on the infinite interval”, Uch. Zap. MGU, 30:3 (1939), 3–16
[2] A. N. Kolmogorov, “On inequalities between the upper bounds of the successive derivatives of an arbitrary function on the infinite interval”, Selected Works: Mathematics and Mechanics, 1985, 252–263
[3] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Inequalities for Derivatives and Theory of Application, Naukova Dumka, Kiev, 2003, 590 pp.
[4] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russ. Math. Surv., 51:6 (1996), 1093–1126 | MR | Zbl
[5] G. G. Magaril-Iljaev, V. M. Tikhomirov, Convex Analysis and Application, Editorial, URSS, 2000 | Zbl
[6] V. N. Konovalov, “Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives”, Math. Notes of Acad. Sci. of the USSR, 23:1 (1978), 38–44 | MR | MR | Zbl | Zbl
[7] A. P. Buslaev, V. M. Tikhomirov, “Inequalities of derivatives in the multidimensional case”, Math. Notes of Acad. Sci. of the USSR, 25:1 (1979), 32–40 | MR | Zbl
[8] O. A. Timoshin, “Precise inequalities between the norms of partial derivatives or second and third order”, DAN, 344:1 (1995), 20–22 | MR | Zbl
[9] V. G. Timofeev, “Landau inequality for function of several variables”, Math. Notes of Acad. Sci. of the USSR, 37:5 (1985), 369–377 | MR | Zbl
[10] V. F. Babenko, “The exact inequalities of the Kolmogorov type for functions of two variables”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2000, no. 5, 7–11 | Zbl
[11] S. B. Vakarchuk, A. V. Shvachko, “Kolmogorov-type inequalities of derived functions of two variables with application for approximation by an “Angle””, Russian Mathematics, 59:11 (2015), 1–18 | MR | MR | Zbl
[12] S. G. Samko, A. A. Kilbas, O. I. Marychev, Fractional and Derivatives. Theory and Applications, Nauka i Tekhnika, Minsk, 1987, 650 pp.
[13] V. V. Arestov, “Inequalities for fractional derivatives on the half-line”, Approximation theory, Proc. conf., PWN-Pol. Sci. Publ., Warsaw, 1979, 19–34 | MR
[14] G. G. Magaril-Il'jaev, V. M. Tikhomirov, “On the Kolmogorov inequality for fractional derivatives on the half-line”, Anal. Math., 7:1 (1981), 37–47 | MR
[15] V. F. Babenko, M. S. Churilova, “On Kolmogorov-type inequality for fractional order derivatives”, Researches in Mathematics, 6 (2001), 16–20
[16] V. F. Babenko, S. A. Pichugov, “Sharp estimates for the norms of fractional derivatives of functions of several variables satisfying the Hölder conditions”, Math. Notes, 87:1–2 (2010), 23–30 | MR | Zbl
[17] V. F. Babenko, N. V. Parfinovich, S. A. Pichugov, “Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions”, Ukrainian Math. Journal, 62:3 (2010), 301–314 | MR | Zbl
[18] M. K. Potapov, “The study of certain classes of functions by means of “angular” approximation”, Trudy Mat. Inst. Steklov, 117 (1972), 301–342 | MR
[19] Brudny\u{i} Ju. A., “Approximation of functions of $n$ variables by quasi-polynomials”, Izv. Akad. Nauk SSSR Ser. Mat., 34 (1970), 568–586 | MR
[20] S. B. Vakarchuk, M. B. Vakarchuk, “The Kolmogorov-type inequality for analytic functions of one and two complex variables and their applications in theory of approximation”, Ukr. Mat. Zh., 63:12 (2011), 1579–1601
[21] M. Sh. Shabozov, V. D. Saynakov, “On Kolmogorov type inequality in the Bergman space for functions of two variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 270–282 | MR
[22] S. B. Vakarchuk, M. Sh. Shabozov, “On exact values of quasiwidths of some classes of functions”, Ukrainian Mathematical Journal, 48:3 (1996), 338–346 | MR | Zbl
[23] M. Sh. Shabozov, M. O. Akobirshoev, “Quasiwidths of some classes of differentiable periodic functions of two variables”, Dokl. Akad. Nauk, 404:4 (2005), 460–464 | MR | Zbl
[24] M. Sh. Shabozov, M. O. Akobirshoev, “On exact values of quasiwidths of some classes of differentiable functions of two variables”, Ukrainian Mathematical Journal, 61:6 (2009), 1013–1024 | MR | Zbl
[25] Korneichuk N. P., Exact constant in the theory of approximation, Nauka, M., 1987, 424 pp. | MR