About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 348-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_{2}:=L_{2}(Q), \, Q:=\{0 \leq x, y \leq 2\pi\}$ be the Hilbert space of summable with square of functions$f(x,y)$ in $Q$ domain with norm \begin{equation*} \|f\|_{2}:=\|f\|_{L_{2}(Q)}:=\left\{\frac{1}{4\pi^{2}}\iint_{(Q)}|f(x,y)|^2dxdy\right\}^{1/2} \infty, \end{equation*} and $L_{2}^{(r,s)}(Q)$ is class of functions $f\in L_{2}$ whose derivatives $f^{(k,l)}\in C(Q)$, а $f^{(r,l)}, \, f^{(k,s)}$ $(0\leq k\leq r-1$, $0\leq l\leq s-1, \, r,s\geq 2, r,s\in\mathbb{N})$, $f^{(r,s)}$ are sectionally continuous and $f^{(r,s)}\in L_{2}$. In this paper was proved that for arbitrary function $f\in L_{2}^{(r,s)}$ is hold the following sharp Kolmogorov type inequality \begin{equation*} \|f^{(r-k,s-l)}\|_{L_2(Q)}\leq\|f\|^{kl/rs}_{L_2(Q)}\cdot\|f^{(r,0)}\|^{(1-\frac{k}{r})\frac{l}{s}}_{L_2(Q)}\cdot \|f^{(0,s)}\|^{\frac{k}{r}(1-\frac{l}{s})}_{L_2(Q)}\cdot\|f^{(r,s)}\|^{(1-\frac{k}{r})(1-\frac{l}{s})}_{L_2(Q)}. \end{equation*} Also, the Kolmogorov type inequality was found for the best approximation $\mathscr{E}_{m-1,n-1}(f^{(r-k,s-l)})_{2}$ of intermediate derivatives $f^{(r-k,s-l)}$ of functions $f\in L_{2}^{(r,s)}$ by trigonometric “angles” with form \begin{equation*} \mathscr{E}_{m-1,n-1}(f^{(r-k,s-l)})_{2}\leq \end{equation*} \begin{equation*}\displaystyle\leq\left(\mathscr{E}_{m-1,n-1}\left(f\right)_{2}\right)^{kl/rs}\cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(r,0)}\right)_{L_{2}}\right)^{\left(1-\frac{k}{r}\right)\frac{l}{s}}\cdot\end{equation*} \begin{equation*} \cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(0,s)}\right)_{2}\right)^{\frac{k}{r}\left(1-\frac{l}{s}\right)}\cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(r,s)}\right)_{2}\right)^{\left(1-\frac{k}{r}\right)\left(1-\frac{l}{s}\right)}, \end{equation*} This obtained inequality was applied for the problems of joint approximation and their application in $L_{2}$. The sharp values of linear and Kolmogorov widths for some classes of functions were calculated.
Keywords: Kolmogorov's type of inequalities, generalized polynomial, quasipolynomial, the best approximation, quasiwidth.
@article{CHEB_2019_20_2_a26,
     author = {M. Sh. Shabozov and M. O. Akobirshoev},
     title = {About {Kolmogorov} type of inequalities for periodic functions of two variables in $L_2$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {348--365},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. O. Akobirshoev
TI  - About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 348
EP  - 365
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/
LA  - ru
ID  - CHEB_2019_20_2_a26
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. O. Akobirshoev
%T About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$
%J Čebyševskij sbornik
%D 2019
%P 348-365
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/
%G ru
%F CHEB_2019_20_2_a26
M. Sh. Shabozov; M. O. Akobirshoev. About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 348-365. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a26/

[1] A. N. Kolmogorov, “On inequalities between the upper bounds of the successive derivatives of an arbitrary function on the infinite interval”, Uch. Zap. MGU, 30:3 (1939), 3–16

[2] A. N. Kolmogorov, “On inequalities between the upper bounds of the successive derivatives of an arbitrary function on the infinite interval”, Selected Works: Mathematics and Mechanics, 1985, 252–263

[3] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Inequalities for Derivatives and Theory of Application, Naukova Dumka, Kiev, 2003, 590 pp.

[4] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russ. Math. Surv., 51:6 (1996), 1093–1126 | MR | Zbl

[5] G. G. Magaril-Iljaev, V. M. Tikhomirov, Convex Analysis and Application, Editorial, URSS, 2000 | Zbl

[6] V. N. Konovalov, “Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives”, Math. Notes of Acad. Sci. of the USSR, 23:1 (1978), 38–44 | MR | MR | Zbl | Zbl

[7] A. P. Buslaev, V. M. Tikhomirov, “Inequalities of derivatives in the multidimensional case”, Math. Notes of Acad. Sci. of the USSR, 25:1 (1979), 32–40 | MR | Zbl

[8] O. A. Timoshin, “Precise inequalities between the norms of partial derivatives or second and third order”, DAN, 344:1 (1995), 20–22 | MR | Zbl

[9] V. G. Timofeev, “Landau inequality for function of several variables”, Math. Notes of Acad. Sci. of the USSR, 37:5 (1985), 369–377 | MR | Zbl

[10] V. F. Babenko, “The exact inequalities of the Kolmogorov type for functions of two variables”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2000, no. 5, 7–11 | Zbl

[11] S. B. Vakarchuk, A. V. Shvachko, “Kolmogorov-type inequalities of derived functions of two variables with application for approximation by an “Angle””, Russian Mathematics, 59:11 (2015), 1–18 | MR | MR | Zbl

[12] S. G. Samko, A. A. Kilbas, O. I. Marychev, Fractional and Derivatives. Theory and Applications, Nauka i Tekhnika, Minsk, 1987, 650 pp.

[13] V. V. Arestov, “Inequalities for fractional derivatives on the half-line”, Approximation theory, Proc. conf., PWN-Pol. Sci. Publ., Warsaw, 1979, 19–34 | MR

[14] G. G. Magaril-Il'jaev, V. M. Tikhomirov, “On the Kolmogorov inequality for fractional derivatives on the half-line”, Anal. Math., 7:1 (1981), 37–47 | MR

[15] V. F. Babenko, M. S. Churilova, “On Kolmogorov-type inequality for fractional order derivatives”, Researches in Mathematics, 6 (2001), 16–20

[16] V. F. Babenko, S. A. Pichugov, “Sharp estimates for the norms of fractional derivatives of functions of several variables satisfying the Hölder conditions”, Math. Notes, 87:1–2 (2010), 23–30 | MR | Zbl

[17] V. F. Babenko, N. V. Parfinovich, S. A. Pichugov, “Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions”, Ukrainian Math. Journal, 62:3 (2010), 301–314 | MR | Zbl

[18] M. K. Potapov, “The study of certain classes of functions by means of “angular” approximation”, Trudy Mat. Inst. Steklov, 117 (1972), 301–342 | MR

[19] Brudny\u{i} Ju. A., “Approximation of functions of $n$ variables by quasi-polynomials”, Izv. Akad. Nauk SSSR Ser. Mat., 34 (1970), 568–586 | MR

[20] S. B. Vakarchuk, M. B. Vakarchuk, “The Kolmogorov-type inequality for analytic functions of one and two complex variables and their applications in theory of approximation”, Ukr. Mat. Zh., 63:12 (2011), 1579–1601

[21] M. Sh. Shabozov, V. D. Saynakov, “On Kolmogorov type inequality in the Bergman space for functions of two variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 270–282 | MR

[22] S. B. Vakarchuk, M. Sh. Shabozov, “On exact values of quasiwidths of some classes of functions”, Ukrainian Mathematical Journal, 48:3 (1996), 338–346 | MR | Zbl

[23] M. Sh. Shabozov, M. O. Akobirshoev, “Quasiwidths of some classes of differentiable periodic functions of two variables”, Dokl. Akad. Nauk, 404:4 (2005), 460–464 | MR | Zbl

[24] M. Sh. Shabozov, M. O. Akobirshoev, “On exact values of quasiwidths of some classes of differentiable functions of two variables”, Ukrainian Mathematical Journal, 61:6 (2009), 1013–1024 | MR | Zbl

[25] Korneichuk N. P., Exact constant in the theory of approximation, Nauka, M., 1987, 424 pp. | MR