Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a24, author = {N. D. Tutyshkin and V. Yu. Travin}, title = {Analysis of spatial stress and velocity fields in plastic flow processes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {325--335}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a24/} }
TY - JOUR AU - N. D. Tutyshkin AU - V. Yu. Travin TI - Analysis of spatial stress and velocity fields in plastic flow processes JO - Čebyševskij sbornik PY - 2019 SP - 325 EP - 335 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a24/ LA - ru ID - CHEB_2019_20_2_a24 ER -
N. D. Tutyshkin; V. Yu. Travin. Analysis of spatial stress and velocity fields in plastic flow processes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 325-335. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a24/
[1] A. A. Ilyushin, Plasticity: Fundamentals of General Mathematical Theory, AN SSSR, M., 1963, 271 pp. (In Russian)
[2] D. D. Ivlev, Mechanics of Plastic Environments, in 2 vol., v. 1, Theory of Perfect Plasticity, Fizmatlit, M., 2001, 232 pp. (In Russian)
[3] N. D. Tutyshkin, V. I. Tregubov, Related problems of the theory of plasticity and damage to deformable materials, TulGU, Tula, 2016, 248 pp. (In Russian)
[4] N. D. Tutyshkin, P. Lofink, W. H. Müller, R. Wille, O. Stahn, “Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants”, International Journal Continuum mechanics and thermodynamics, 29 (2017), 251–269 | MR | Zbl
[5] N. D. Tutyshkin, W. H. Müller, R. Wille, M. A. Zapara, “Strain-induced damage of metals under large plastic deformation: Theoretical framework and experiments”, International Journal of Plasticity, 59 (2014), 133–151
[6] B. L. Rozhdestvenskiy, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Science, M., 1978, 687 pp. (In Russian) | MR
[7] I. A. Brigadnov, “Mathematical correctness and numerical methods for solving initial-boundary problems of plasticity”, Izvestiya RAN. Solid mechanics, 1996, no. 4, 62–74 (In Russian)
[8] N. N. Yanenko, Yu. I. Boyarintsev, “Theory and methods of integration of systems of nonlinear partial differential equations”, Trudy IV Vsesoyuznogo math. s"ezda, v. 2, M., 1964, 613–621 (In Russian) | Zbl
[9] N. D. Tutyshkin, “Metal plastic straining processes with predictable mechanical and constitutive properties modeling”, IASME Transactions, 2:9 (2005), 1819–1825
[10] V. V. Sokolovskiy, Plasticity theory, Higher School, M., 1969, 608 pp. (In Russian) | MR