Differentiation of functions of quaternionic variable
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 298-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is considered the definition of differentiability and regularity by Fueter [1, 2] and examples of regular function by Fueter, and the definition of C-regularity and C-derivative or Cullen derivative, on the basis of which a new theory of regular functions, which already includes polynomials and converging series of hypercomplex variable as differentiable and regular functions. Then a new definition of differentiability is proposed. It has a classical form, but specific convergence, which allows to prove theorems about differentiability of the sum and product of differentiable functions, differentiability of the “quotient” of differentiable functions. Further, it is deduced the derivative of power and is proved differentiability of polynomials and power series that allows to construct generalization of elementary functions for quaternionic argument. An example is given to show that without specific convergence the given definition of differentiability loses its meaning. With the help of power series functions are given, which are solutions of differential equations with constant quaternion coefficients. It is considered the problem of finding the roots of a square equation that arises in solving differential equations.
Keywords: quaternion, imaginary units, trigonometric form, the argument of the quaternion, the module of the quaternion, the vector part of the quaternion, a real differential function, C-regular function, differential equation.
@article{CHEB_2019_20_2_a22,
     author = {N. S. Polyakova},
     title = {Differentiation of functions of quaternionic variable},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {298--310},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a22/}
}
TY  - JOUR
AU  - N. S. Polyakova
TI  - Differentiation of functions of quaternionic variable
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 298
EP  - 310
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a22/
LA  - ru
ID  - CHEB_2019_20_2_a22
ER  - 
%0 Journal Article
%A N. S. Polyakova
%T Differentiation of functions of quaternionic variable
%J Čebyševskij sbornik
%D 2019
%P 298-310
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a22/
%G ru
%F CHEB_2019_20_2_a22
N. S. Polyakova. Differentiation of functions of quaternionic variable. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 298-310. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a22/

[1] R. Fueter, “Zur Theorie der regularen Funktionen einer Quaternionenvariablen”, Monatshefte f. Math. $\$ Phis., 43 (1932), 69–84 | MR

[2] R. Fueter, “Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta \Delta u = 0$ mit vier reelen Variablen”, Comment. Math. Helv., 7 (1934), 307–330 | MR

[3] C. G. Cullen, “An integral theorem for analytic intrinsic function on quaternions”, Duke Math. J., 32 (1965), 139–148 | MR | Zbl

[4] G. Gentili, D. C. Struppa, “A new theory of regular functions of a quaternionic variable”, Advances in Mathematics, 216 (2007), 279–301 | MR | Zbl

[5] A. V. Branets, I. Shmiglevsky, The application of quaternions in problems of orientation a solid body, Nauka, M., 1973, 320 pp. | MR

[6] N. I. Amelkin, Kinematics and dynamics of a solid body, MFTI, M., 2000, 65 pp.

[7] V. F. Zhuravlev, Fundamentals of theoretical mechanics, Fismatlit, M., 2001, 320 pp. | MR

[8] N. N. Shamarov, “Application of non-standard numerical systems in mathematical physics”, Sovremennaya matematica. Fundamentalnie napravleniya, 23, RUDN, M., 2007, 182–194

[9] Yefremov A. P., RUDN, M., 2005, 274 pp.

[10] A. P. Yefremov, “Relativistic Oscilator in Quaternion Relativity”, Quantization in Astrophysics, Brounian Motion, and Supersymmetry, Chennai Ed, 2007, 440–457

[11] A. P. Yefremov, “Predgeometric structure of associative algebras and quaternion spaces as a habitat of physical laws”, Prostranstvo, vrema i fundamentalnye vzaimodejstvia, 2014, no. 1, 5–19

[12] V. G. Kravchenko, V. V. Kravchenko, “On some nonlinear equations, generated by Fueter type operators”, Zeitschrift fur Analysys und ihre Anwendungen, 13:4 (1994), 599–602 | MR | Zbl

[13] V. V. Kravchenko, M. V. Shapiro, Integral Representation for Spatial Models of Mathematical Physics, Pitman Res. Notes Math., 351, Longman, Harlow, 1996, 247 pp. | MR

[14] N. S. Polyakova, G. S. Deryabina, Quaternions and their applications, MGTU, M., 2003, 56 pp.

[15] N. S. Polyakova, G. S. Deryabina, Hypercomplex numbers, MGTU, M., 2017, 72 pp.

[16] G. Gentili, G. Sarfatti, “The Mittag-Leffler Theorem for regular functions of a quaternionic variable”, New York Journal of Mathematics, 23 (2017), 583–592 | MR | Zbl

[17] R. T. Farouki, G. Gentili, C. Giannelli, A. Sestini, C. Stoppato, “Solution of a quadratic quaternion equation with mixed coefficients”, J. of Symbolic Computation, 74 (2016), 140–151 | MR | Zbl