Introducing the interaction distance in the context of distance geometry for human motions
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 273-283

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamical Distance Geometry Problem (dynDGP) is a recently introduced subclass of the distance geometry where problems have a dynamical component. The graphs $$G=(V \times T,E,\{\delta,\pi\})$$ of dynDGPs have a vertex set that is the set product of two sets: the set $V$, containing the objects to animate, and the set $T$, representing the time. In this article, the focus is given to special instances of the dynDGP that are used to represent human motion adaptation problems, where the set $V$ admits a skeletal structure $(S,\chi)$. The “interaction distance” is introduced as a possible replacement of the Euclidean distance which is able to capture the information about the dynamics of the problem, and some initial properties of this new distance are presented.
Keywords: dynamical distance geometry, interaction distance, human motion adaptation, retargeting, animated skeletal structures, symmetric quasi-distance.
@article{CHEB_2019_20_2_a20,
     author = {A. Mucherino},
     title = {Introducing the interaction distance in the context of distance geometry for human motions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {273--283},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a20/}
}
TY  - JOUR
AU  - A. Mucherino
TI  - Introducing the interaction distance in the context of distance geometry for human motions
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 273
EP  - 283
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a20/
LA  - en
ID  - CHEB_2019_20_2_a20
ER  - 
%0 Journal Article
%A A. Mucherino
%T Introducing the interaction distance in the context of distance geometry for human motions
%J Čebyševskij sbornik
%D 2019
%P 273-283
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a20/
%G en
%F CHEB_2019_20_2_a20
A. Mucherino. Introducing the interaction distance in the context of distance geometry for human motions. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 273-283. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a20/