On problem of abstract definability of universal hypergraphic automata by input symbol semigroup
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 259-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hypergraphic automata are automata, state sets and output symbol sets of which are hypergraphs, being invariant under actions of transition and output functions. Universally attracting objects in the category of such automata are called universal hypergraphic automata. The semigroups of input symbols of such automata are derivative algebras of mappings for such automata. Semigroup properties are interconnected with properties of the automaton. Therefore, we can study universal hypergraphic automata by investigation of their input symbol semigroups. In this paper, we solve a problem of abstract definability of such automata by their input symbol semigroups. This problem is to find the conditions of isomorphism of semigroups of input symbols of universal hypergraphic automata. The main result of the paper is the solving of this problem for universal hypergraphic automata over effective hypergraphs with $p$-definable edges. It is a wide and a very important class of automata because such algebraic systems contain automata whose state hypergraphs and output symbol hypergraphs are projective or affine planes. Also they include automata whose state hypergraphs and output symbol hypergraphs are divided into equivalence classes without singleton classes. In the current study, we proved that such automata were determined up to isomorphism by their input symbol semigroups and we described the structure of isomorphisms of such automata.
Keywords: problem of abstract definability, automaton, hypergraph, semigroup.
@article{CHEB_2019_20_2_a19,
     author = {V. A. Molchanov and E. V. Khvorostukhina},
     title = {On problem of abstract definability of universal hypergraphic automata by input symbol semigroup},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {259--272},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a19/}
}
TY  - JOUR
AU  - V. A. Molchanov
AU  - E. V. Khvorostukhina
TI  - On problem of abstract definability of universal hypergraphic automata by input symbol semigroup
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 259
EP  - 272
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a19/
LA  - ru
ID  - CHEB_2019_20_2_a19
ER  - 
%0 Journal Article
%A V. A. Molchanov
%A E. V. Khvorostukhina
%T On problem of abstract definability of universal hypergraphic automata by input symbol semigroup
%J Čebyševskij sbornik
%D 2019
%P 259-272
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a19/
%G ru
%F CHEB_2019_20_2_a19
V. A. Molchanov; E. V. Khvorostukhina. On problem of abstract definability of universal hypergraphic automata by input symbol semigroup. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 259-272. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a19/

[1] Plotkin B. I., Geenglaz L. Ja., Gvaramija A. A., Algebraic structures in automata and databases theory, World Scientific, Singapore–River Edge, NJ, 1992, 192 pp. | MR | Zbl

[2] V. A. Molchanov, “Semigroups of mappings on graphs”, Semigroup Forum, 1983, no. 27, 155–199 | MR | Zbl

[3] Sverdlovsk notebook: A collection of unsolved problems of semigroup theory, Ural. univ., Sverdlovsk, 1979, 41 pp.

[4] Lender V. B., “On edomorphisms of projective geometries”, Issledovanija algebraicheskih sistem, Matem. zapiski Ural. un., 1984, 48–50 | MR

[5] V. A. Molchanov, “Projective planes are determined by their semigroups”, Teorija polugrupp i ejo prilozhenija. Polugruppy i svjazannye s nimi algebraicheskie sistemy, 1984, 42–50

[6] V. Molchanov, “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82, 2011, 1–9 | MR | Zbl

[7] A. Bretto, Hypergraph theory. An Introduction, Springer, Cham, 2013, 133 pp. | DOI | MR | Zbl

[8] Ulam S., A Collection of Mathematical Problems, Interscience, New York, 1960, 168 pp. | MR | Zbl

[9] Molchanov V. A., Khvorostukhina E. V., “On problem of abstract characterization of universal hypergraphic automata”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:2 (2017), 148–159 | MR | Zbl

[10] Molchanov V. A., Khvorostukhina E. V., “On problem of abstract definability of universal hypergraphic automata by semigroups of their input symbols”, Materialy XIV Mezhdunarodnoj konferencii "Algebra i teorija chisel: sovremennye problemy i prilozhenija", posvjashhennoj 70-ti letiju so dnja rozhdenija S M. Voronina i G. I. Arhipova, XIV Int. Conf. "Algebra and Number theory" (Saratov, 2016), 67–69

[11] Clifford A. H., Preston G. B., The algebraic theory of semigroups, v. 1, American Mathematical society, Providence, 1961, 224 pp. | MR | Zbl

[12] Vagner V. V., “Relation theory and algebra of partial mappings”, Teorija polugrup i ejo prilozhenija, 1, 1965, 3–178 | Zbl

[13] Molchanov A. V., “Endomorphism semigroups of weak $p$-hypergraphs”, Russian Mathematics (Izvestiya VUZ. Matematika), 44:3 (2000), 77–80 | MR | MR | Zbl

[14] A. V. Molchanov, “On definability of hypergraphs by their semigroups of homomorphisms”, Semigroup Forum, 2001, no. 62, 53–65 | MR | Zbl

[15] Molchanov A. V., “Ob opredeljaemosti gipergraficheskih avtomatov ih vyhodnymi funkcijami”, Teoreticheskie problemy informatiki, 2, 1998, 74–84

[16] Hartshorne R., Foundations of Projective Geometry, New York, 2009, 190 pp. | MR

[17] Khvorostukhina E. V., “On a class of hypergraphic automata”, Teoreticheskie problemy informatiki and its applications, 8, Saratov, 2008, 112–118