Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 221-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

The category of sequences $\mathcal{S}$ has been introduced in [1, 2, 3]. Objects of the category $\mathcal{S}$ are finite sequences of the form $a_{1},\ldots,a_{n}$, where the elements $a_{1},\ldots,a_{n}$ belong to a finitely presented module over the ring of polyadic numbers $\widehat{{Z}}$. The ring of polyadic numbers $\widehat{{Z}}=\prod\limits_{p}{\widehat{Z}}_{p}$ is the product of the rings of $p$-adic integers over all prime numbers $p$. Morphisms of the category $\mathcal{S}$ from the object $a_{1},\ldots,a_{n}$ to an object $b_{1},\ldots,b_{k}$ are all possible pairs $(\varphi, T),$ where $\varphi: \langle a_{1},\ldots,a_{n}\rangle_{\widehat{{Z}}} \rightarrow \langle b_{1},\ldots,b_{k}\rangle_{\widehat{{Z}}}$ is a homomorphism of $\widehat{{Z}}$-modules, generated by given elements, and $T$ is a matrix of dimension $k\times n$ with integer entries such that the following matrix equality takes place $$(\varphi a_{1},\ldots,\varphi a_{n})=(b_{1},\ldots,b_{k})T.$$ It is proved in [2] that the category $\mathcal{S}$ is equivalent to the category $\mathcal{D}$ of mixed quotient divisible abelian groups with marked bases. It is proved in [3] that the category $\mathcal{S}$ is dual to the category $\mathcal{F}$ of torsion-free finite-rank abelian groups with marked bases, a basis means here a maximal linearly independent set of elements. The composition of these equivalence and duality is the duality introduced in [1] and in [4], which can be considered as a version of the duality introduced in [5]. If an object of the category $\mathcal{S}$ consists of one element, then it corresponds to rank-1 groups of the categories $\mathcal{\mathcal{D}}$ and $\mathcal{F}$. This case is considered in [6] and we obtain the following. The duality $\mathcal{S}\leftrightarrow\mathcal{F}$ gives us the classical description by R. Baer [7] of rank-$1$ torsion-free groups. The equivalence $\mathcal{S}\leftrightarrow\mathcal{D}$ coincides with the description by O.I. Davydova [8] of rank-$1$ quotient divisible groups. We consider another marginal case in the present paper. Every torsion abelian group can be considered as a module over the ring of polyadic numbers. Moreover, a torsion group is a finitely presented $\widehat{{Z}}$-module if and only if it is finite. Thus, for every set of generators $g_{1},\ldots,g_{n}$ of every finite abelian group $G$ the sequence $g_{1},\ldots,g_{n}$ is an object of the category $\mathcal{S}$. Such objects determine a complete subcategory of the category $\mathcal{S}$. We show in the present paper that the object $g_{1},\ldots,g_{n}$ of the category $\mathcal{S}$ corresponds to an object of the category $\mathcal{D}$, which is of the form $G\oplus Q^{n}$ with the marked basis $g_{1}+e_{1},\ldots,g_{n}+e_{n}$, where $e_{1},\ldots,e_{n}$ is the standard basis of the vector space $Q^{n}$ over the field of rational numbers $Q$. The same object $g_{1},\ldots,g_{n}$ corresponds to an object of the category $\mathcal{F}$, which is a free group $A$, satisfying the conditions $Z^{n}\subset A\subset Q^{n}$ and $A/Z^{n}\cong G^{\ast}$, where $ G^{\ast}=Hom(G,Q/Z)$ is the dual finite group. We consider also the group homomorphisms corresponding to morphisms of the category $\mathcal{S}$.
Keywords: abelian groups, modules, dual categories.
@article{CHEB_2019_20_2_a16,
     author = {E. I. Kompantseva and A. A. Fomin},
     title = {Quotient divisible groups and torsion-free groups corresponding to finite {Abelian} groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {221--233},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - A. A. Fomin
TI  - Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 221
EP  - 233
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/
LA  - ru
ID  - CHEB_2019_20_2_a16
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A A. A. Fomin
%T Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups
%J Čebyševskij sbornik
%D 2019
%P 221-233
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/
%G ru
%F CHEB_2019_20_2_a16
E. I. Kompantseva; A. A. Fomin. Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/

[1] A. A. Fomin, “Invariants for Abelian groups and dual exact sequences”, J. Algebra, 322:7 (2009), 2544–2565 | MR | Zbl

[2] Fomin A. A., “On the Quotient Divisible Group Theory. II”, J. Math. Sci., 230:3 (2018), 457–483 | MR | Zbl

[3] Fomin A. A., “Torsion free abelian groups of finite rank with marked bases”, J. Math. Sci.

[4] Yakovlev A. V., “Duality of the categories of torsion-free Abelian groups of finite rank and quotient divisible Abelian groups”, J. Math. Sci., 171:3 (2010), 416–420 | MR | Zbl

[5] A. A. Fomin, W. J. Wickless, “Quotient divisible abelian groups”, Proc. A.M.S., 126:1 (1998,), 45–52 | MR | Zbl

[6] Fomin A. A., “Dual abelian groups of rank 1”, Proceedings of the XV International conference devoted to the 100-th Birthday of Professor N. M. Korobov (May 28–31, 2018, Tula), 62–63 (Russian)

[7] R. Baer, “Abelian groups without elements of finite order”, Duke Math., 3:1 (1937), 68–122 | MR

[8] Davydova O. I., “Rank-1 quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | MR | Zbl

[9] Gordeeva E. V., Fomin A. A., “Completely decomposable homogeneous quotient divisible abelian groups”, Chebyshevskii Sbornik, 19:2, 376–387 (Russian)

[10] Fomin A. A., “On the Quotient Divisible Group Theory. I”, J. Math. Sci., 197:5 (2014), 688–697 | MR | Zbl

[11] W. J. Wickless, “Direct sums of quotient divisible groups”, Communications in Algebra, 31:1 (2003), 79–96 | MR | Zbl

[12] U. Albrecht, S. Breaz, C. Vinsonhaler, W. Wickless, “Cancellation properties for quotient divisible groups”, Journal of Algebra, 317:1 (2007), 424–434 | MR | Zbl

[13] W. Wickless, “Multi-isomorphism for quotient divisible groups”, Houston J. Math., 31:1 (2006), 1–19 | MR

[14] U. Albrecht, B. Wickless, “Finitely generated and cogenerated $QD$ groups”, Rings, modules, algebras, and abelian, 236:1 (2004), 13–26 | MR | Zbl

[15] Lyubimtsev O. V., “Completely decomposable quotient divisible abelian groups with $UA$-rings of endomorphisms”, Mathematical Notes, 98:1 (2015), 130–137 | MR | Zbl

[16] Lyubimtsev O. V., “On determinacy of completely decomposable quotient divisible abelian groups by its endomorphism semigroups”, Russian Math (Iz. VUZ), 61:10 (2017), 65–71 | MR | MR | Zbl

[17] Tsarev A. V., “Modules over the ring of pseudorational numbers and quotient divisible groups”, St. Petersburg Math. J., 18:4 (2007), 657–669 | MR | Zbl

[18] Tsarev A. V., “The module of pseudo-rational relations of a quotient divisible group”, St. Petersburg Math. J., 22:1 (2010), 163–174 | MR

[19] Tsarev A. V., “Pseudorational rank of a quotient divisible group”, J. Math. Sci., 144:2 (2007), 4013–4022 | MR | Zbl

[20] Tsarev A. V., “$T$-rings and quotient divisible groups of rank 1”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 24:4 (2013), 50–53

[21] Kryuchkov N. I., “Compact Groups That Are Duals of Quotient Divisible Abelian Groups”, J. Math. Sci., 230:3 (2018), 428–432 | MR | Zbl

[22] A. A. Fomin, W. Wickless, “Self-small mixed abelian groups $G$ with $G/T(G)$ finite rank divisible”, Communications in Algebra, 26:11 (1998), 3563–3580 | MR | Zbl

[23] A. A. Fomin, “Quotient divisible and almost completely decomposable groups”, Models, Modules and Abelian Groups: in Memory of A. L. S. Corner, de Gruyter, Berlin–New York, 2008, 147–167 | MR | Zbl

[24] L. Fuchs, Abelian groups, Springer International Publishing, Switz., 2015 | MR | Zbl

[25] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5:1 (1961), 61–98 | MR | Zbl

[26] E. I. Kompantseva, “Semisimple rings on completely decomposable Abelian groups”, J. Math. Sci., 154:3 (2008), 324–332 | MR | Zbl

[27] E. I. Kompantseva, “Rings on almost completely decomposable Abelian groups”, J. Math. Sci., 163:6 (2009), 688–693 | MR | Zbl

[28] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl

[29] Kompantseva E. I., Fomin A. A., “Absolute ideals of almost completely decomposabe abelian groups”, Chebyshevskii Sb., 16:4 (2015), 200–211 | MR | Zbl

[30] Blagoveshchenskaya E. A., Almost completely decomposable abelian groups and their endomorphism rings, Izd-lstvo Politehnicheskogo universiteta, SPb, 2009 (Russian)

[31] Yakovlev A. V., “On the problem of classification of finite rank groups without torsion”, J. Soviet Math., 11:4 (1979), 660–663 | Zbl | Zbl

[32] S. Thomas, “The Classification Problem for Torsion-Free Abelian Groups of Finite Rank”, JAMS, 16 (2003), 233–256 | MR

[33] R. Beaumont, R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc., 38, 1961 | MR | Zbl

[34] Fomin A. A., “Abelian groups with one $\tau$-adic relation”, Algebra and Logic, 28:1 (1989), 57–73 | MR | MR | Zbl

[35] Fomin A. A., “Abelian groups with free subgroups of infinite index and their endomorphism groups”, Mathematical Notes, 36:2 (1984), 581–585 | MR | MR | Zbl

[36] A. A. Fomin, “Some mixed abelian groups as modules over the ring of pseudo-rational numbers”, Trends in Math., Burkhauser Verlag, Basel, Switzerland, 1999, 87–100 | MR