Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a16, author = {E. I. Kompantseva and A. A. Fomin}, title = {Quotient divisible groups and torsion-free groups corresponding to finite {Abelian} groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {221--233}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/} }
TY - JOUR AU - E. I. Kompantseva AU - A. A. Fomin TI - Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups JO - Čebyševskij sbornik PY - 2019 SP - 221 EP - 233 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/ LA - ru ID - CHEB_2019_20_2_a16 ER -
E. I. Kompantseva; A. A. Fomin. Quotient divisible groups and torsion-free groups corresponding to finite Abelian groups. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a16/
[1] A. A. Fomin, “Invariants for Abelian groups and dual exact sequences”, J. Algebra, 322:7 (2009), 2544–2565 | MR | Zbl
[2] Fomin A. A., “On the Quotient Divisible Group Theory. II”, J. Math. Sci., 230:3 (2018), 457–483 | MR | Zbl
[3] Fomin A. A., “Torsion free abelian groups of finite rank with marked bases”, J. Math. Sci.
[4] Yakovlev A. V., “Duality of the categories of torsion-free Abelian groups of finite rank and quotient divisible Abelian groups”, J. Math. Sci., 171:3 (2010), 416–420 | MR | Zbl
[5] A. A. Fomin, W. J. Wickless, “Quotient divisible abelian groups”, Proc. A.M.S., 126:1 (1998,), 45–52 | MR | Zbl
[6] Fomin A. A., “Dual abelian groups of rank 1”, Proceedings of the XV International conference devoted to the 100-th Birthday of Professor N. M. Korobov (May 28–31, 2018, Tula), 62–63 (Russian)
[7] R. Baer, “Abelian groups without elements of finite order”, Duke Math., 3:1 (1937), 68–122 | MR
[8] Davydova O. I., “Rank-1 quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | MR | Zbl
[9] Gordeeva E. V., Fomin A. A., “Completely decomposable homogeneous quotient divisible abelian groups”, Chebyshevskii Sbornik, 19:2, 376–387 (Russian)
[10] Fomin A. A., “On the Quotient Divisible Group Theory. I”, J. Math. Sci., 197:5 (2014), 688–697 | MR | Zbl
[11] W. J. Wickless, “Direct sums of quotient divisible groups”, Communications in Algebra, 31:1 (2003), 79–96 | MR | Zbl
[12] U. Albrecht, S. Breaz, C. Vinsonhaler, W. Wickless, “Cancellation properties for quotient divisible groups”, Journal of Algebra, 317:1 (2007), 424–434 | MR | Zbl
[13] W. Wickless, “Multi-isomorphism for quotient divisible groups”, Houston J. Math., 31:1 (2006), 1–19 | MR
[14] U. Albrecht, B. Wickless, “Finitely generated and cogenerated $QD$ groups”, Rings, modules, algebras, and abelian, 236:1 (2004), 13–26 | MR | Zbl
[15] Lyubimtsev O. V., “Completely decomposable quotient divisible abelian groups with $UA$-rings of endomorphisms”, Mathematical Notes, 98:1 (2015), 130–137 | MR | Zbl
[16] Lyubimtsev O. V., “On determinacy of completely decomposable quotient divisible abelian groups by its endomorphism semigroups”, Russian Math (Iz. VUZ), 61:10 (2017), 65–71 | MR | MR | Zbl
[17] Tsarev A. V., “Modules over the ring of pseudorational numbers and quotient divisible groups”, St. Petersburg Math. J., 18:4 (2007), 657–669 | MR | Zbl
[18] Tsarev A. V., “The module of pseudo-rational relations of a quotient divisible group”, St. Petersburg Math. J., 22:1 (2010), 163–174 | MR
[19] Tsarev A. V., “Pseudorational rank of a quotient divisible group”, J. Math. Sci., 144:2 (2007), 4013–4022 | MR | Zbl
[20] Tsarev A. V., “$T$-rings and quotient divisible groups of rank 1”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 24:4 (2013), 50–53
[21] Kryuchkov N. I., “Compact Groups That Are Duals of Quotient Divisible Abelian Groups”, J. Math. Sci., 230:3 (2018), 428–432 | MR | Zbl
[22] A. A. Fomin, W. Wickless, “Self-small mixed abelian groups $G$ with $G/T(G)$ finite rank divisible”, Communications in Algebra, 26:11 (1998), 3563–3580 | MR | Zbl
[23] A. A. Fomin, “Quotient divisible and almost completely decomposable groups”, Models, Modules and Abelian Groups: in Memory of A. L. S. Corner, de Gruyter, Berlin–New York, 2008, 147–167 | MR | Zbl
[24] L. Fuchs, Abelian groups, Springer International Publishing, Switz., 2015 | MR | Zbl
[25] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5:1 (1961), 61–98 | MR | Zbl
[26] E. I. Kompantseva, “Semisimple rings on completely decomposable Abelian groups”, J. Math. Sci., 154:3 (2008), 324–332 | MR | Zbl
[27] E. I. Kompantseva, “Rings on almost completely decomposable Abelian groups”, J. Math. Sci., 163:6 (2009), 688–693 | MR | Zbl
[28] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl
[29] Kompantseva E. I., Fomin A. A., “Absolute ideals of almost completely decomposabe abelian groups”, Chebyshevskii Sb., 16:4 (2015), 200–211 | MR | Zbl
[30] Blagoveshchenskaya E. A., Almost completely decomposable abelian groups and their endomorphism rings, Izd-lstvo Politehnicheskogo universiteta, SPb, 2009 (Russian)
[31] Yakovlev A. V., “On the problem of classification of finite rank groups without torsion”, J. Soviet Math., 11:4 (1979), 660–663 | Zbl | Zbl
[32] S. Thomas, “The Classification Problem for Torsion-Free Abelian Groups of Finite Rank”, JAMS, 16 (2003), 233–256 | MR
[33] R. Beaumont, R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc., 38, 1961 | MR | Zbl
[34] Fomin A. A., “Abelian groups with one $\tau$-adic relation”, Algebra and Logic, 28:1 (1989), 57–73 | MR | MR | Zbl
[35] Fomin A. A., “Abelian groups with free subgroups of infinite index and their endomorphism groups”, Mathematical Notes, 36:2 (1984), 581–585 | MR | MR | Zbl
[36] A. A. Fomin, “Some mixed abelian groups as modules over the ring of pseudo-rational numbers”, Trends in Math., Burkhauser Verlag, Basel, Switzerland, 1999, 87–100 | MR