Trigonometric sums in the metric theory of Diophantine approximation
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 207-220

Voir la notice de l'article provenant de la source Math-Net.Ru

It is a survey with respect to using trigonometric sums in the metric theory of Diophantine approximation on the manifolds in $n$-dimensional Euclidean space. We represent both classical results and contemporary theorems for $\Gamma$, $\dim\Gamma=m$, $n/2$. We also discuss reduction of a problem about Diophantine approximation to trigonometric sum or trigonometric integral, and indicate measure-theoretic considerations. If $m\le n/2$ then usually it is used the other methods. For example, the essential and inessential domains method or methods of Ergodic Theory. Here we cite two fundamental theorems of this theory. One of them was obtained by V. G. Sprindzuk (1977). The other theorem was proved by D. Y. Kleinbock and G. A. Margulis (1998). The first result was obtained using method of trigonometric sums. The second theorem was proved using methods of Ergodic Theory. Here the authors applied new technique which linked Diophantine approximation and homogeneous dynamics. In conclusion, we add a short comment concerning the tendencies of a development of the metric theory of Diophantine approximation of dependent quantities and its contemporary aspects.
Keywords: Diophantine approximation, metric theory, differentiable manifolds, trigonometric sums, Van der Corput's method, I. M. Vinogradov's method of trigonometric sums.
@article{CHEB_2019_20_2_a15,
     author = {E. I. Kavaleuskaya},
     title = {Trigonometric sums in the metric theory of {Diophantine} approximation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/}
}
TY  - JOUR
AU  - E. I. Kavaleuskaya
TI  - Trigonometric sums in the metric theory of Diophantine approximation
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 207
EP  - 220
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/
LA  - ru
ID  - CHEB_2019_20_2_a15
ER  - 
%0 Journal Article
%A E. I. Kavaleuskaya
%T Trigonometric sums in the metric theory of Diophantine approximation
%J Čebyševskij sbornik
%D 2019
%P 207-220
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/
%G ru
%F CHEB_2019_20_2_a15
E. I. Kavaleuskaya. Trigonometric sums in the metric theory of Diophantine approximation. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/