Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a15, author = {E. I. Kavaleuskaya}, title = {Trigonometric sums in the metric theory of {Diophantine} approximation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {207--220}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/} }
E. I. Kavaleuskaya. Trigonometric sums in the metric theory of Diophantine approximation. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a15/
[1] V. I. Bernik, E. I. Kovalevskaja, “Extremal properties of some surface in $n$-dimensional Euclidean space”, Math. Notes, 15:2 (1974), 247–254 | Zbl
[2] V. I. Bernik, Yu. V. Melnichuk, Diophantine approximation and Hausdorff dimension, Nauka i Nechnika, Minsk, 1988 | MR
[3] Cassels J. W. S., An introduction to Diophantine Approximation, Cambridge Tracts in Math and Math. Phys., 45, Cambridge Univ. Press, 1957 | MR | Zbl
[4] E. I. Kovalevskaja, ““Hyperbolic” approximation on analytic manifolds”, Dokl. Akad. Nauk BSSR, 19:3 (1975), 200–203 | Zbl
[5] E. I. Kovalevskaja, “Diophantine approximation with quadratic polynomials”, Vesci Akad. Navuk BSSR. Ser. Fiz. Mat. Navuk, 1975, no. 4, 5–14 | Zbl
[6] E. I. Kovalevskaja, “One geometric property of extremal surface”, Math. Notes, 23:2 (1978), 177–181 | MR | Zbl
[7] Kovalevskaya E. I., “The trigonometric sums and the metric theory of Diophantine approximation on manifolds”, Proc. XV Int. Conf. on Algebra, Number Theory and Discrete Geometry: Contemporary Problems and Applications devoted to centenary of professor N. M. Korobov (Tula, Russia, 28–31 May 2018), 257–260 (In Russian)
[8] Kavaleuskaya E. I., “Geometric and arithmetic description of extremal manifolds in the metric theory of Diophantine approximation”, Proc. XVI Int. Conf. on Algebra, Number Theory and Discrete Geometry: Contemporary Problems, Applications and Problem of History, devoted to eighty of professor Mishel Deza (Tula, Russia, 13–18 May 2019), 239–241
[9] Kovalevskaya E. I., Rykova O. V., “The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces”, Chebyshevskii Sbornik, 14:4 (2013), 119–126 | MR | Zbl
[10] I. P. Kubilius, “On the application of I. M. Vinogradov's method to the solution of a problem of the metric theory of numbers”, Dokl. Akad. Nauk SSSR, 67 (1949), 783–786 | MR
[11] I. P. Kubilius, “On the metrical problem in the theory of Diophantine approximation”, Trudy Akad. Nauk Litov. SSR, Ser. B, 1959, no. 2(18), 3–7 | MR
[12] Sprindz̆uk V. G., Mahler's problem in metric number theory, English translation by B. Volkman, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[13] Sprindz̆uk V. G., “The method of trigonometric sums in the metric theory of diophantine approximation of dependent quantities”, Proc. Steklov Inst. Math. Akad. Nauk SSSR, 128, no. 2, 1972, 212–254 | MR
[14] Sprindz̆uk V. G., Metric theory of Diophantine approximations, English translation by R. A. Silverman, John Wiley and Sons, New York–Toronto–London, 1979 | MR | MR | Zbl
[15] F. Adiceam, V. Beresnevich, V. Levesley, S. Velani, E. Zorin, “Diophantine approximation and applications in interference alignment”, Advances in Math., 302 (2016), 231–279 | MR | Zbl
[16] M. Bayramoglu, I. Sh. Jabbarov, L. G. Kazimova, “On some theoretic-functional results concerning the theory of extremality and their application”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 229–237 | MR | Zbl
[17] V. Beresnevich, V. Bernik, “Götze F. Integral polynomials with small discriminants and resultants”, Advances in Math., 298 (2016), 393–412 | MR | Zbl
[18] V. Beresnevich, F. Ramirez, S. Velani, “Metric Diophantine approximation: aspects on recent work”, Dynamics and Analytic Number Theory, LMS Lecture Notes Ser., 437, eds. D. Badziahin, A. Gorodnik, N. Reyerimhoff, Cambridge Univ. Press, 2016, 1–95 | MR | Zbl
[19] V. Beresnevich, L. Lee, R. C. Vaughan, S. Velani, “Diophantine approximation on manifolds and lower bounds Hausdorff dimension”, Math., 63 (2017), 762–779 | MR | Zbl
[20] V. Beresnevich, S. Velani, “A note on three problems in metric Diophantine approximation”, Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, R.I., 2015, 211–229 | MR | Zbl
[21] V. Beresnevich, R. C. Vaughan, S. Velani, E. Zorin, “Diophantine approximation on manifolds and the distribution of rational points: contributions to the convergence theory”, Int. Math. Research Notices, 2016, 1–24 | MR
[22] V. I. Bernik, M. M. Dodson, Metric Diophantine Approximation of Manifolds, Cambridge Tracts in Math., 137, Cambridge University Press, Cambridge, 1999 | MR
[23] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Math., 169, Cambridge Univ. Press, 2004 | MR
[24] M. M. Dodson, J. A. G. Vickers, Number Theory and dynamical systems, London Math. Soc. Lecture Note Ser., 134, Cambridge Univ. Press, 1989 | MR | Zbl
[25] D. Y. Kleinbock, G. A. Margulis, “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | MR | Zbl
[26] E. I. Kovalevskaja, “Metric theorems on the approximation of zero by a linear combination of polynomials with integral coefficients”, Acta Arith., 25 (1973), 93–104 | MR
[27] E. Kovalevskaya, “The convergence part of a Khintchne-type theorem in the ring of adeles”, Tatra Mountains Math. Publ., 59 (2014), 39–50 | MR | Zbl
[28] W. M. Schmidt, “Über Gitterpunkte auf gewissen Flächen”, Monatch. Math., 68:1 (1964), 59–74 | MR | Zbl
[29] W. M. Schmidt, “Metrische Sätze Über simultane Approximationabhängiger Grössen”, Monatch. Math., 68:2 (1964), 154–166 | MR | Zbl
[30] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math., 785, Springer-Verlag, 1980 | MR | Zbl
[31] J. Steuding, Diophantine analysis. Course notes from a Summer School, Trends in Math., Birkhäuser. Springer Int. Publ. AG., 2016 | MR | Zbl