Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a14, author = {Aleksandar Juri\v{s}i\'c and Jano\v{s} Vidali}, title = {No strongly regular graph is locally {Heawood}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {198--206}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/} }
Aleksandar Jurišić; Janoš Vidali. No strongly regular graph is locally Heawood. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 198-206. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/
[1] D. Brandfonbrener, Algebraic graph theory, strongly regular graphs, and Conway's $99$ problem, 2017 https://davidbrandfonbrener.github.io/Files/senior_paper.pdf
[2] A. E. Brouwer, Strongly regular graphs, 2013 http://www.win.tue.nl/ãeb/graphs/srg/srgtab.html
[3] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[4] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: An exercise in the theory of graph spectra”, European J. Combin., 14 (1993), 397–407 | DOI | MR | Zbl
[5] J. H. Conway, Five \$1,000 problems, 2017 (Update 2017) https://oeis.org/A248380/a248380.pdf
[6] G. Royle, Cubic graphs, , 1996 http://staffhome.ecm.uwa.edu.au/ ̃ 00013890/remote/cubics/index.html