No strongly regular graph is locally Heawood
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 198-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate when a strongly regular graph is locally Heawood. We focus on a putative strongly regular graph with parameters $(v, k, \lambda, \mu) = (85, 14, 3, 2)$, which is the only candidate for such a graph. Assuming that the graph is locally Heawood, we analyze its structure, finally arriving to a contradiction, which allows us to conclude that no strongly regular graph is locally Heawood.
Keywords: strongly regular graphs, local graphs, Heawood graph.
@article{CHEB_2019_20_2_a14,
     author = {Aleksandar Juri\v{s}i\'c and Jano\v{s} Vidali},
     title = {No strongly regular graph is locally {Heawood}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {198--206},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/}
}
TY  - JOUR
AU  - Aleksandar Jurišić
AU  - Janoš Vidali
TI  - No strongly regular graph is locally Heawood
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 198
EP  - 206
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/
LA  - en
ID  - CHEB_2019_20_2_a14
ER  - 
%0 Journal Article
%A Aleksandar Jurišić
%A Janoš Vidali
%T No strongly regular graph is locally Heawood
%J Čebyševskij sbornik
%D 2019
%P 198-206
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/
%G en
%F CHEB_2019_20_2_a14
Aleksandar Jurišić; Janoš Vidali. No strongly regular graph is locally Heawood. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 198-206. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a14/

[1] D. Brandfonbrener, Algebraic graph theory, strongly regular graphs, and Conway's $99$ problem, 2017 https://davidbrandfonbrener.github.io/Files/senior_paper.pdf

[2] A. E. Brouwer, Strongly regular graphs, 2013 http://www.win.tue.nl/ãeb/graphs/srg/srgtab.html

[3] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[4] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: An exercise in the theory of graph spectra”, European J. Combin., 14 (1993), 397–407 | DOI | MR | Zbl

[5] J. H. Conway, Five \$1,000 problems, 2017 (Update 2017) https://oeis.org/A248380/a248380.pdf

[6] G. Royle, Cubic graphs, , 1996 http://staffhome.ecm.uwa.edu.au/ ̃ 00013890/remote/cubics/index.html