On two approaches to classification of higher local fields
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 186-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article links Kurihara's classification of complete discrete valuation fields and Epp's theory of elimination of wild ramification. For any complete discrete valuation field $K$ with arbitrary residue field of prime characteristic one can define a certain numerical invariant $\Gamma(K)$ which underlies Kurihara's classification of such fields into $2$ types: the field $K$ is of Type I if and only if $\Gamma(K)$ is positive. The value of this invariant indicates how distant is the given field from a standard one, i.e., from a field which is unramified over its constant subfield $k$ which is the maximal subfield with perfect residue field. (Standard $2$-dimensional local fields are exactly fields of the form $k\{\{t\}\}$.) We prove (under some mild restriction on $K$) that for a Type I mixed characteristic $2$-dimensional local field $K$ there exists an estimate from below for $[l:k]$ where $l/k$ is an extension such that $lK$ is a standard field (existing due to Epp's theory); the logarithm of this degree can be estimated linearly in terms of $\Gamma(K)$ with the coefficient depending only on $e_{K/k}$.
Keywords: higher local fields, wild ramification.
@article{CHEB_2019_20_2_a13,
     author = {O. Ivanova and S. Vostokov and I. Zhukov},
     title = {On two approaches to classification of higher local fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {186--197},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a13/}
}
TY  - JOUR
AU  - O. Ivanova
AU  - S. Vostokov
AU  - I. Zhukov
TI  - On two approaches to classification of higher local fields
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 186
EP  - 197
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a13/
LA  - en
ID  - CHEB_2019_20_2_a13
ER  - 
%0 Journal Article
%A O. Ivanova
%A S. Vostokov
%A I. Zhukov
%T On two approaches to classification of higher local fields
%J Čebyševskij sbornik
%D 2019
%P 186-197
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a13/
%G en
%F CHEB_2019_20_2_a13
O. Ivanova; S. Vostokov; I. Zhukov. On two approaches to classification of higher local fields. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a13/

[1] H. Epp, “Eliminating wild ramification”, Invent. Math., 19 (1973), 235–249 | MR | Zbl

[2] St. Petersburg Math. J., 24:2 (2013), 283–299 | MR | Zbl

[3] St. Petersburg Math. J., 24:6 (2013), 877–901 | MR | Zbl

[4] K. Kato, “A generalization of local class field theory by using K-groups, I”, J. Fac. Sci. Univ. Tokyo. Sect. 1A Math., 26 (1979), 303–376 | MR | Zbl

[5] K. Kato, “A generalization of local class field theory by using K-groups, II”, J. Fac. Sci. Univ. Tokyo. Sect. 1A Math., 27 (1980), 603–683, 1 pp. | MR | Zbl

[6] St. Petersburg Math. J., 11 (2000), 1063–1083 | MR | Zbl

[7] M. Kurihara, “On two types of complete discrete valuation fields”, Compos. Math., 63 (1987), 237–257 | MR | Zbl

[8] A. I. Madunts, I. B. Zhukov, “Multidimensional complete fields: topology and other basic constructions”, Proceedings of the St. Petersburg Mathematical Society, v. III, Amer. Math. Soc. Transl. Ser. 2, 166, Amer. Math. Soc., Providence, RI, 1995, 1–34 | MR | Zbl

[9] J. Milnor, “Algebraic K-Theory and Quadratic Forms”, Inventiones math., 9 (1970), 318–344 | MR | Zbl

[10] A. N. Parshin, “Polya klassov i algebraicheskaya K-teoriya”, UMN, 30:1(181) (1975), 253–254 | MR | Zbl

[11] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Trudy mat. in-ta AN SSSR, 165, 1985, 143–170

[12] St. Petersburg Math. J., 26 (2015), 695–740 | MR | Zbl

[13] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Tr. S.-Peterburg. mat. obsch-va, 3, 1995, 194–214 | MR | Zbl

[14] I. Zhukov, Higher dimensional local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 5–18 | MR | Zbl

[15] St. Petersburg Math. J., 27 (2016), 967–976 | MR | Zbl