Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a11, author = {M. Dutour}, title = {The hypermetric cone and polytope on graphs}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {169--177}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/} }
M. Dutour. The hypermetric cone and polytope on graphs. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/
[1] F. Barahona, “The max-cut problem on graphs not contractible to $K_{s}$”, Oper. Res. Lett., 2:3 (1983), 107–111 | MR | Zbl
[2] F. Barahona, “On cuts and matchings in planar graphs”, Math. Programming, Ser. A, 60:1 (1993), 53–68 | MR | Zbl
[3] E. P. Baranovskiĭ, “Volumes of $L$-simplexes of five-dimensional lattices”, Mat. Zametki, 13 (1973), 771–782 | MR | Zbl
[4] E. P. Baranovskii, “About l-simplexes of $6$-dimensional lattices”, Second International conference “Algebraic, Probabilistic, Geometrical, Combinatorial and Functional Methods in the theory of numbers”, 1995 (in russian)
[5] E. P. Baranovskii, “The conditions for a simplex of $6$-dimensional lattice to be $l$-simplex”, Nauch. Trud. Ivan., 1999, no. 2, 18–24 (in russian) | MR
[6] A. Deza, B. Goldengorin, D. V. Pasechnik, “The isometries of the cut, metric and hypermetric cones”, J. Algebraic Combin., 23:2 (2006), 197–203 | MR | Zbl
[7] M. Deza, M. Dutour, “The hypermetric cone on seven vertices”, Experiment. Math., 12:4 (2003), 433–440 | MR | Zbl
[8] M. Deza, M. Dutour Sikirić, “The hypermetric cone and polytope on eight vertices and some generalizations”, J. Symbolic Comput., 88 (2018), 67–84 | MR | Zbl
[9] M. Deza, V. P. Grishukhin, M. Laurent, “Extreme hypermetrics and $L$-polytopes”, Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992, 157–209 | MR | Zbl
[10] M. Deza, V. P. Grishukhin, M. Laurent, “Hypermetrics in geometry of numbers”, Combinatorial optimization (New Brunswick, NJ, 1992–1993), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 20, Amer. Math. Soc., Providence, RI, 1995, 1–109 | MR | Zbl
[11] M. Deza, M. D. Sikirić, “Enumeration of the facets of cut polytopes over some highly symmetric graphs”, Int. Trans. Oper. Res., 23:5 (2016), 853–860 | MR | Zbl
[12] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer, Heidelberg, 2010 (First softcover printing of the 1997 original [MR1460488]) | MR | Zbl
[13] M. Dutour, “The six-dimensional Delaunay polytopes”, European J. Combin., 25:4 (2004), 535–548 | MR | Zbl
[14] M. Dutour Sikirić, “The seven dimensional perfect Delaunay polytopes and Delaunay simplices”, Canad. J. Math., 69:5 (2017), 1143–1168 | MR | Zbl
[15] M. Dutour Sikirić, M. M. Deza, E. I. Deza, “Computations of metric/cut polyhedra and their relatives”, Handbook of geometric constraint systems principles, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2019, 213–231 | MR | Zbl
[16] M. Dutour Sikirić, V. Grishukhin, “How to compute the rank of a Delaunay polytope”, European J. Combin., 28:3 (2007), 762–773 | MR | Zbl
[17] M. Dutour Sikirić, A. Schürmann, F. Vallentin, “Inhomogeneous extreme forms”, Ann. Inst. Fourier (Grenoble), 62:6 ((2013) 2012), 2227–2255 | MR
[18] R. Erdahl, “A cone of inhomogeneous second-order polynomials”, Discrete Comput. Geom., 8:4 (1992), 387–416 | MR | Zbl
[19] U. Fincke, M. Pohst, “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis”, Math. Comp., 44:170 (1985), 463–471 | MR | Zbl
[20] S. S. Ryshkov, E. P. Baranovskii, “Repartitioning complexes in $n$-dimensional lattices (with full description for $n\leq 6$)”, Proceedings of conference “Voronoi impact on modern science”, v. 2, 1998, 115–124 | Zbl
[21] P. D. Seymour, “Matroids, multicommodity flows”, European J. Combin., 2:3 (1981), 257–290 | MR | Zbl