The hypermetric cone and polytope on graphs
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 169-177

Voir la notice de l'article provenant de la source Math-Net.Ru

The hypermetric cone was defined in [9] and was extensively studied by Michel Deza and his collaborators. Another key interest of him was cut and metric polytope which he considered in his last works in the case of graphs. Here we combine both interest by considering the hypermetric on graphs. We define them for any graph and give an algorithm for computing the extreme rays and facets of hypermetric cone on graphs. We compute the hypermetric cone for the first non-trivial case of $K_7 - \{e\}$. We also compute the hypermetric cone in the case of graphs with no $K_5$ minor.
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2019_20_2_a11,
     author = {M. Dutour},
     title = {The hypermetric cone and polytope on graphs},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/}
}
TY  - JOUR
AU  - M. Dutour
TI  - The hypermetric cone and polytope on graphs
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 169
EP  - 177
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/
LA  - en
ID  - CHEB_2019_20_2_a11
ER  - 
%0 Journal Article
%A M. Dutour
%T The hypermetric cone and polytope on graphs
%J Čebyševskij sbornik
%D 2019
%P 169-177
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/
%G en
%F CHEB_2019_20_2_a11
M. Dutour. The hypermetric cone and polytope on graphs. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a11/