On a generalized Eulerian product defining a meromorphic function on the whole complex plane
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 156-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the Euler product of the form $$ P_\pi(M,a(p)|\alpha)=\prod_{p\in P(M)}\left(1-\frac{a(p)}{p^{\alpha+\pi(p)}}\right)^{-1}, $$ where $M$ is an arbitrary monoid of natural numbers formed by the set of primes $P(M)$. Another object of study is the Dirichlet series of the form $$ f_\pi(M|\alpha)=\sum_{n\in M}\frac{1}{n^{\alpha +\pi(n)}}. $$ It turns out that they have completely different properties. The Dirichlet series $f_\pi (M| \alpha)$ defines a holomorphic function on the entire complex plane. And the Euler product $P_\pi(M| \alpha)$ for a monoid $M$ whose set of primes $P(M)$ is infinite, sets on the entire complex plane a meromorphic function that has a countable set of special vertical lines, each of which has a countable set of poles. In conclusion, the relevant problem of the zeros of the function $f_\pi(M|\alpha)$ is considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
@article{CHEB_2019_20_2_a10,
     author = {N. N. Dobrovol'skii and M. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {On a generalized {Eulerian} product defining a meromorphic function on the whole complex plane},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {156--168},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - M. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - On a generalized Eulerian product defining a meromorphic function on the whole complex plane
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 156
EP  - 168
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/
LA  - ru
ID  - CHEB_2019_20_2_a10
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A M. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T On a generalized Eulerian product defining a meromorphic function on the whole complex plane
%J Čebyševskij sbornik
%D 2019
%P 156-168
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/
%G ru
%F CHEB_2019_20_2_a10
N. N. Dobrovol'skii; M. N. Dobrovol'skii; N. M. Dobrovol'skii. On a generalized Eulerian product defining a meromorphic function on the whole complex plane. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 156-168. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/