On a generalized Eulerian product defining a meromorphic function on the whole complex plane
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 156-168
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies the Euler product of the form
$$
P_\pi(M,a(p)|\alpha)=\prod_{p\in P(M)}\left(1-\frac{a(p)}{p^{\alpha+\pi(p)}}\right)^{-1},
$$
where $M$ is an arbitrary monoid of natural numbers formed by the set of primes $P(M)$.
Another object of study is the Dirichlet series of the form
$$
f_\pi(M|\alpha)=\sum_{n\in M}\frac{1}{n^{\alpha +\pi(n)}}.
$$ It turns out that they have completely different properties. The Dirichlet series $f_\pi (M| \alpha)$ defines a holomorphic function on the entire complex plane.
And the Euler product $P_\pi(M| \alpha)$ for a monoid $M$ whose set of primes $P(M)$ is infinite, sets on the entire complex plane a meromorphic function that has a countable set of special vertical lines, each of which has a countable set of poles.
In conclusion, the relevant problem of the zeros of the function $f_\pi(M|\alpha)$ is considered.
Keywords:
Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
@article{CHEB_2019_20_2_a10,
author = {N. N. Dobrovol'skii and M. N. Dobrovol'skii and N. M. Dobrovol'skii},
title = {On a generalized {Eulerian} product defining a meromorphic function on the whole complex plane},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {156--168},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - M. N. Dobrovol'skii AU - N. M. Dobrovol'skii TI - On a generalized Eulerian product defining a meromorphic function on the whole complex plane JO - Čebyševskij sbornik PY - 2019 SP - 156 EP - 168 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/ LA - ru ID - CHEB_2019_20_2_a10 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A M. N. Dobrovol'skii %A N. M. Dobrovol'skii %T On a generalized Eulerian product defining a meromorphic function on the whole complex plane %J Čebyševskij sbornik %D 2019 %P 156-168 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/ %G ru %F CHEB_2019_20_2_a10
N. N. Dobrovol'skii; M. N. Dobrovol'skii; N. M. Dobrovol'skii. On a generalized Eulerian product defining a meromorphic function on the whole complex plane. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 156-168. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a10/