About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 22-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the estimation of the constant of sumultaneous Diophantine approximations for $ n $ real numbers. The approach developed by H. Davenport and J. W. S. Cassels. H. Davenport discovered the connection between the value of the critical determinant of a star body and the estimation of some forms. In the particular case, this allows calculating the critical determinant of the $ (n + 1) $-dimensional star body of Davenport $$ \mathbb {F}_{n}: | x_0 | \max \limits_{1 \leq i \leq n} | x_i |^n 1, $$ get the value of the constant of joint Diophantine approximations. However, the calculation of critical determinants for bodies of this type is a difficult task. Therefore, J. W. S. Cassels moved from directly calculating the critical determinant, to estimating its value. For this, he used the estimate of the largest value of $ V_{n, s} $ – the volume of a parallelepiped centered at the origin of coordinates located inside the $ (n + 1) $-dimensional star body $$ \mathbb {F}_{n, s}: f_{n, s} = \frac 1 {2^s} \prod \limits_{i = 1}^{s} | x_i^2 + x_{s + i}^2 | \prod \limits_{i = 2s + 1}^{n} | x_i | 1. $$ These results reduce the problem of estimating the constant of joint Diophantine approximations to an estimate of the volume of the largest parallelepiped $ V_{n, s} $. Earlier, estimates for $ V_{n, s} $ were obtained in the works of J. W. S. Cassels, T. Cusick, S. Krass. This paper is devoted to methods of forming hypotheses about the values of $ V_{n, s} $ based on the results of numerical experiments. The article outlines the approach to obtaining parallelepipeds contained within a star body and possessing the largest volume. This approach combines the use of both numerical and analytical methods.
Keywords: best joint Diophantine approximations, geometry of numbers, star bodies, critical determinants.
@article{CHEB_2019_20_2_a1,
     author = {Yu. A. Basalov},
     title = {About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {22--38},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Basalov
TI  - About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 22
EP  - 38
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a1/
LA  - ru
ID  - CHEB_2019_20_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Basalov
%T About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations
%J Čebyševskij sbornik
%D 2019
%P 22-38
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a1/
%G ru
%F CHEB_2019_20_2_a1
Yu. A. Basalov. About the method of estimating critical determinants within the question of the estimation of the constant of simultaneous diophantine approximations. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 22-38. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a1/

[1] Yu. A. Basalov, On estimating the constant of simultaneous Diophantine approximation, arXiv: (data obrascheniya: 10.04.2019) 1804.05385

[2] J. W. S. Cassels, “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | MR | Zbl

[3] T. W. Cusick, “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | MR | Zbl

[4] H. Davenport, “On a theorem of Furtw?angler”, J. London Math. Soc., 30 (1955), 186–195 | MR | Zbl

[5] S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, 94, Cambridge University Press, 2003 | MR | Zbl

[6] H. Furtwängler, “Uber die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | MR

[7] H. Furtwängler, “Uber die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | MR | Zbl

[8] A. Hurwitz, “Uber die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche”, Math. Ann., 39 (1891), 279–284 | MR

[9] S. Krass, J. Number Theory, 20:2 (1985), 172–176 | MR | Zbl

[10] S. Krass, “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | MR | Zbl

[11] J. M. Mack, “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | MR | Zbl

[12] W. G. Nowak, “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | MR | Zbl

[13] W. G. Nowak, “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl

[14] W. G. Nowak, “Lower bounds for simultaneous Diophantine approximation constants”, Comm. Math., 22:1 (2014), 71–76 | MR | Zbl

[15] W. G. Nowak, “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem”, Essays in mathematics and its applications, eds. T.M. Rassias, P. M. Pardalos, Springer, Switzerland, 2016, 181–197 | MR | Zbl

[16] Yu. A. Basalov, “On the history of estimates of the constant of the best joint Diophantine approximations”, Chebyshevskii sbornik, 19:2 (2018), 388–405 | DOI

[17] Yu. A. Basalov, “Estimation of the constant of the best simultaneous Diophanite approximations for $n=5$ and $n=6$”, Chebyshevskii sbornik, 20:1 (2019) | MR

[18] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Mir, M., 1965 | MR

[19] N. G. Moshchevitin, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239 (2002), 268–274

[20] W. M. Schmidt, Diophantine Approximation, Mir, 1983

[21] A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/