Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a9, author = {N. N. Dobrovol'skii and M. N. Dobrovol'skii and N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova}, title = {Dirichlet series algebra of a monoid of natural numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {180--196}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a9/} }
TY - JOUR AU - N. N. Dobrovol'skii AU - M. N. Dobrovol'skii AU - N. M. Dobrovol'skii AU - I. N. Balaba AU - I. Yu. Rebrova TI - Dirichlet series algebra of a monoid of natural numbers JO - Čebyševskij sbornik PY - 2019 SP - 180 EP - 196 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a9/ LA - ru ID - CHEB_2019_20_1_a9 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A M. N. Dobrovol'skii %A N. M. Dobrovol'skii %A I. N. Balaba %A I. Yu. Rebrova %T Dirichlet series algebra of a monoid of natural numbers %J Čebyševskij sbornik %D 2019 %P 180-196 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a9/ %G ru %F CHEB_2019_20_1_a9
N. N. Dobrovol'skii; M. N. Dobrovol'skii; N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova. Dirichlet series algebra of a monoid of natural numbers. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 180-196. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a9/
[1] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | MR | Zbl
[2] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR
[3] A. Gurvic, R. Kurant, Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.
[4] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | MR | Zbl
[5] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | MR
[6] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | MR
[7] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | MR | Zbl
[8] N. N. Dobrovol'sky, “One model Zeta function of the monoid of natural numbers”, Chebyshevskii Sb., 20:1 (2019), 148–163 | Zbl
[9] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl
[10] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of prime elements in certain monoids of natural numbers”, Chebyshevskii sbornik, 19:2 (2018), 123–141 | Zbl
[11] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | Zbl
[12] A. Dubickas, R. Macaitienė, “Some Moments in the Life of Antanas Laurinčikas: the Search for Universality”, Chebyshevskii sbornik, 20:1 (2019), 6–45 | MR
[13] Laurinčikas A., Matsumoto K., Steuding J., “The universality of $L$-functions associated with newforms”, Izv. RAN, Ser. Mat., 67:1 (2003), 77–90 | MR | Zbl
[14] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.
[15] N. G. Chudakov, Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.–L., 1947, 204 pp. | MR