Monoids of natural numbers in the numerical-theoretical method in the approximate analysis
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 164-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every monoid $M$ of natural numbers defined a new class of periodic functions $M_s^\alpha$, which is a subclass of a known class of periodic functions Korobov $E_s^\alpha$. With respect to the norm $\|f(\vec{x})\|_{E_s^\alpha}$, the class $M_s^\alpha$ is an inseparable Banach subspace of class $E_s^\alpha$. It is established that the class $M_s^\alpha$ is closed with respect to the action of the Fredholm integral operator and the Fredholm integral equation of the second kind is solvable on this class. In this paper we obtain estimates of the image norm of the integral operator, which contain the kernel norm and the $s$-th degree of the Zeta function of the monoid $M$. Estimates are obtained for the parameter $\lambda$, in which the integral operator $A_{\lambda,f}$ is a compression. The theorem on the representation of the unique solution of Fredholm integral equation of the second kind in the form of Neumann series is proved. The paper deals with the problems of solving the partial differential equation with the differential operator $Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)$ in the space $M^\alpha_{s}$, which depends on the arithmetic properties of the spectrum of this operator. A paradoxical fact is found that for a monoid $M_{q,1}$ of numbers comparable to 1 modulo $q$, a quadrature formula with a parallelepiped grid for an admissible set of coefficients modulo $q$ is exact on the class $M_{q,1,s}^\alpha$. Moreover, this statement remains true for the class $M_{q,a,s}^\alpha$ with $1$ when $q$ is a Prime number. Since the functions of class $M_{q,a,s}^\alpha$ with $1$ do not have a zero Fourier coefficient $C(\vec{0})$, then for a simple $q$ the sum of the function values at the nodes of the corresponding parallelepipedal grid will be zero.
Keywords: classes of functions, quadrature formulas, Dirichlet series, zeta function of the monoid of natural numbers.
@article{CHEB_2019_20_1_a8,
     author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii and I. Yu. Rebrova and A. V. Rodionov},
     title = {Monoids of natural numbers in the numerical-theoretical method in the approximate analysis},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {164--179},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - A. V. Rodionov
TI  - Monoids of natural numbers in the numerical-theoretical method in the approximate analysis
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 164
EP  - 179
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/
LA  - ru
ID  - CHEB_2019_20_1_a8
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%A I. Yu. Rebrova
%A A. V. Rodionov
%T Monoids of natural numbers in the numerical-theoretical method in the approximate analysis
%J Čebyševskij sbornik
%D 2019
%P 164-179
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/
%G ru
%F CHEB_2019_20_1_a8
N. N. Dobrovol'skii; N. M. Dobrovol'skii; I. Yu. Rebrova; A. V. Rodionov. Monoids of natural numbers in the numerical-theoretical method in the approximate analysis. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/

[1] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4(64) (2018), 6–85 | MR | Zbl

[2] Dobrovol'skii N.M., Manokhin E. V., “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR

[3] Dobrovol'skii N. M., Manokhin E. V., Rebrova I. Yu., Akkuratova S. V., “On some properties of normed spaces and algebras of nets”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 5:1 (1999), 100–113 | MR

[4] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | MR

[5] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | MR

[6] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | MR | Zbl

[7] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl

[8] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, Chebyshevskii sbornik, 19:2 (2018), On the number of prime elements in certain monoids of natural numbers | Zbl

[9] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | Zbl

[10] Korobov N. M., “On approximate solution of integral equations”, Doklady Akademii nauk SSSR, 128:2 (1959), 235–238 | Zbl

[11] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 1963

[12] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., 2004, 288 pp.

[13] Rodionov A. V., “On the method by V. S. Ryaben'kii–N. M. Korobov approximate solutions of partial differential equations”, Chebyshevskii sbornik, 10:3 (2009), 84–96

[14] Ryaben'kij V. S., “On a method for obtaining difference schemes and on the use of number-theoretic grids for solving the Cauchy problem by the finite difference method”, Trudy matematicheskogo instituta im V. A. Steklova, 60, 1961, 232–237

[15] Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Rebrov E. D., Basalov Yu. A., Basalova A. N., Lyamin M. I., Rodionov A. V., Numerical-theoretical method in approximate analysis and its implementation in POIVS “TMK”, Monogr., In 2 h., v. II, ed. Dobrovolsky N. M., Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 161 pp. | MR