Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a8, author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii and I. Yu. Rebrova and A. V. Rodionov}, title = {Monoids of natural numbers in the numerical-theoretical method in the approximate analysis}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {164--179}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/} }
TY - JOUR AU - N. N. Dobrovol'skii AU - N. M. Dobrovol'skii AU - I. Yu. Rebrova AU - A. V. Rodionov TI - Monoids of natural numbers in the numerical-theoretical method in the approximate analysis JO - Čebyševskij sbornik PY - 2019 SP - 164 EP - 179 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/ LA - ru ID - CHEB_2019_20_1_a8 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A N. M. Dobrovol'skii %A I. Yu. Rebrova %A A. V. Rodionov %T Monoids of natural numbers in the numerical-theoretical method in the approximate analysis %J Čebyševskij sbornik %D 2019 %P 164-179 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/ %G ru %F CHEB_2019_20_1_a8
N. N. Dobrovol'skii; N. M. Dobrovol'skii; I. Yu. Rebrova; A. V. Rodionov. Monoids of natural numbers in the numerical-theoretical method in the approximate analysis. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a8/
[1] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4(64) (2018), 6–85 | MR | Zbl
[2] Dobrovol'skii N.M., Manokhin E. V., “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR
[3] Dobrovol'skii N. M., Manokhin E. V., Rebrova I. Yu., Akkuratova S. V., “On some properties of normed spaces and algebras of nets”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 5:1 (1999), 100–113 | MR
[4] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | MR
[5] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | MR
[6] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | MR | Zbl
[7] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl
[8] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, Chebyshevskii sbornik, 19:2 (2018), On the number of prime elements in certain monoids of natural numbers | Zbl
[9] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | Zbl
[10] Korobov N. M., “On approximate solution of integral equations”, Doklady Akademii nauk SSSR, 128:2 (1959), 235–238 | Zbl
[11] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 1963
[12] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., 2004, 288 pp.
[13] Rodionov A. V., “On the method by V. S. Ryaben'kii–N. M. Korobov approximate solutions of partial differential equations”, Chebyshevskii sbornik, 10:3 (2009), 84–96
[14] Ryaben'kij V. S., “On a method for obtaining difference schemes and on the use of number-theoretic grids for solving the Cauchy problem by the finite difference method”, Trudy matematicheskogo instituta im V. A. Steklova, 60, 1961, 232–237
[15] Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Rebrov E. D., Basalov Yu. A., Basalova A. N., Lyamin M. I., Rodionov A. V., Numerical-theoretical method in approximate analysis and its implementation in POIVS “TMK”, Monogr., In 2 h., v. II, ed. Dobrovolsky N. M., Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 161 pp. | MR