Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a7, author = {N. N. Dobrovol'sky}, title = {One model {Zeta} function of the monoid of natural numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {148--163}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/} }
N. N. Dobrovol'sky. One model Zeta function of the monoid of natural numbers. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 148-163. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/
[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | MR
[2] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR
[3] A. O. Gel'fond, Calculus of finite differences, Izd-vo Nauka, M., 1967, 376 pp. | MR
[4] A. Gurvic, R. Kurant, Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.
[5] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4(64) (2018), 6–85 | MR | Zbl
[6] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 188–208 | Zbl
[7] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | MR
[8] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | MR | Zbl
[9] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl
[10] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of prime elements in certain monoids of natural numbers”, Chebyshevskii sbornik, 19:2 (2018), 123–141 | Zbl
[11] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | Zbl
[12] E. K. Titchmarsh, Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1952, 407 pp.
[13] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.
[14] N. G. Chudakov, Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.–L., 1947, 204 pp. | MR
[15] B. V. Shabat, Introduction to complex analysis, Science, M., 1969, 576 pp.
[16] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | MR