One model Zeta function of the monoid of natural numbers
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 148-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the Zeta function $\zeta(M(p_1,p_2)|\alpha)$ of the monoid $M (p_1,p_2)$ generated by Prime numbers $p_1$ of the form $3n+2$. Next,the main monoid $M_{3,1}(p_1,p_2)\subset M(p_1,p_2)$ and the main set $ A_{3,1}(p_1,p_2)= M(p_1,p_2)\setminus M_{3,1}(p_1, p_2)$ are distinguished. For the corresponding Zeta functions, explicit finite formulas are found that give an analytic continuation on the entire complex plane except for the countable set of poles. Inverse series for these Zeta functions and functional equations are found. The paper gives definitions of three new types of monoids of natural numbers with a unique decomposition into simple elements: monoids of degrees, Euler monoids modulo $q$ and unit monoids modulo $q$. Provided the expression of the Zeta functions using the Euler product. The paper discusses the effect Davenport–Heilbronn Zeta-functions of monoids of natural numbers that is associated with the appearance of zeros of the Zeta-functions of terms obtained by the classes of residues modulo. For monoids with an exponential sequence of primes, the barrier series hypothesis is proved and it is shown that the holomorphic domain of the Zeta function of such a monoid is the complex half-plane to the right of the imaginary axis. In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
@article{CHEB_2019_20_1_a7,
     author = {N. N. Dobrovol'sky},
     title = {One model {Zeta} function of the monoid of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {148--163},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/}
}
TY  - JOUR
AU  - N. N. Dobrovol'sky
TI  - One model Zeta function of the monoid of natural numbers
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 148
EP  - 163
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/
LA  - ru
ID  - CHEB_2019_20_1_a7
ER  - 
%0 Journal Article
%A N. N. Dobrovol'sky
%T One model Zeta function of the monoid of natural numbers
%J Čebyševskij sbornik
%D 2019
%P 148-163
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/
%G ru
%F CHEB_2019_20_1_a7
N. N. Dobrovol'sky. One model Zeta function of the monoid of natural numbers. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 148-163. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a7/

[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | MR

[2] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR

[3] A. O. Gel'fond, Calculus of finite differences, Izd-vo Nauka, M., 1967, 376 pp. | MR

[4] A. Gurvic, R. Kurant, Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.

[5] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4(64) (2018), 6–85 | MR | Zbl

[6] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 188–208 | Zbl

[7] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | MR

[8] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | MR | Zbl

[9] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl

[10] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of prime elements in certain monoids of natural numbers”, Chebyshevskii sbornik, 19:2 (2018), 123–141 | Zbl

[11] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | Zbl

[12] E. K. Titchmarsh, Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1952, 407 pp.

[13] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[14] N. G. Chudakov, Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.–L., 1947, 204 pp. | MR

[15] B. V. Shabat, Introduction to complex analysis, Science, M., 1969, 576 pp.

[16] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | MR