Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a6, author = {D. V. Gorbachev and V. I. Ivanov}, title = {Weighted inequalities for {Dunkl--Riesz} potential}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {131--147}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/} }
D. V. Gorbachev; V. I. Ivanov. Weighted inequalities for Dunkl--Riesz potential. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/
[1] Frostman O., Potentiel d'equilibre et capacite des ensembles avec quelques applications a la theorie des fonctions, These. Communic. Semin. Math. de l'Univ. de Lund, v. 3, 1935
[2] Riesz M., “L'integrale de Riemann-Liouville et le probleme de Cauchy”, Acta Math., 81:1 (1949), 1–222 | MR
[3] G. H. Hardy, J. E. Littelwood, “Some properties of fractional integrals, I”, Math. Zeit., 27 (1928), 565–606 | MR | Zbl
[4] Soboleff S., “Sur un théoréme d'analyse fonctionnelle”, Amer. Math. Soc. Transl., 1963, no. 2 (34), 39–68 | Zbl
[5] E. M. Stein, G. Weiss, “Fractional integrals on n-dimensional Euclidean space”, J. Math. Mech., 7:4 (1958), 503–514 | MR | Zbl
[6] C. F. Dunkl, “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[7] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2003, 93–135 | MR | Zbl
[8] S. Thangavelu, Y. Xu, “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | MR | Zbl
[9] Rösler M., “Positivity of Dunkl's intertwinning operator”, Duke Math. J., 98 (1999), 445–463 | MR | Zbl
[10] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 | MR | Zbl
[11] Trimèche K., “Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | MR | Zbl
[12] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L_p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI | MR
[13] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | MR | Zbl
[14] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, Riesz potential and maximal function for Dunkl transform, Preprint CRM, No 1238, Barcelona, 2018, 28 pp. | MR
[15] S. Hassani, S. Mustapha, M. Sifi, “Riesz potentials and fractional maximal function for the Dunkl transform”, J. Lie Theory, 19:4 (2009), 725–734 | MR | Zbl
[16] C. Abdelkefi, M. Rachdi, “Some properties of the Riesz potentials in Dunkl analysis”, Ricerche Mat., 64:4 (2015), 195–215 | MR | Zbl
[17] A. Nowak, K. Stempak, “Potential operators associated with Hankel and Hankel-Dunkl transforms”, J. d'Analyse Math., 131:1 (2017), 277–321 | MR | Zbl
[18] De Nápoli P. L., Drelichman I., Durán R. G., “On weighted inequalities for fractional integrals of radial functions”, Illinois J. Math., 55 (2011), 575–587 | MR
[19] Duoandikoetxea J., “Fractional integrals on radial functions with applications to weighted inequalities”, Ann. Mat. Pura Appl., 192 (2013), 553–568 | MR | Zbl
[20] B. S. Rubin, “One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions”, Math. Notes, 34:4 (1983), 751–757 | MR | Zbl
[21] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc., 54:2 (1996), 89–101 | MR | Zbl
[22] A. Kufner, B. Opic, Xardy-type inequalities, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, 1990, 333 pp. | MR
[23] A. Kufner, L. E. Persson, Weighted inequalities of Xardy type, World Scientific hrblishing Co. Pte. Ltd., Singopure-London, 2003, 358 pp. | MR