Weighted inequalities for Dunkl--Riesz potential
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 131-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the classical Riesz potential or the fractional integral $I_{\alpha}$, the Hardy–Littlewood– Sobolev–Stein–Weiss $(L^p, L^q)$-boundedness conditions with power weights are well known. Using the Fourier transform $\mathcal{F}$, the Riesz potential is determined by the equality $\mathcal{F}(I_{\alpha}f)(y)=$ $=|y|^{-\alpha}\mathcal{F}(f)(y)$. An important generalization of the Fourier transform became the Dunkl transform $\mathcal{F}_k(f)$, acting in Lebesgue spaces with Dunkl's weight, defined by the root system $R\subset \mathbb{R}^d$, its reflection group $G$ and a non-negative multiplicity function $k$ on $R$, invariant with respect to $G$. S. Thangavelu and Yu. Xu using the equality $\mathcal{F}_k (I_{\alpha}^kf)(y)=|y|^{-\alpha}\mathcal{F}_k(f)(y)$ determined the $D$-Riesz potential $I_{\alpha}^k$. For the $D$-Riesz potential, the boundedness conditions in Lebesgue spaces with Dunkl weight and power weights, similar to the conditions for the Riesz potential, were also proved. At the conference "Follow-up Approximation Theory and Function Spaces"   in the Centre de Recerca Matemàtica (CRM, Barcelona, 2017) M. L. Goldman raised the question about $(L_p,L_q) $-boundedness conditions of the D-Riesz potential with piecewise-power weights. Consideration of piecewise-power weights makes it possible to reveal the influence of the behavior of weights at zero and infinity on the boundedness of the $D$-Riesz potential. This paper provides a complete answer to this question. In particular, in the case of the Riesz potential, necessary and sufficient conditions are obtained. As auxiliary results, necessary and sufficient conditions for the boundedness of the Hardy and Bellman operators are proved in Lebesgue spaces with Dunkl weight and piecewise-power weights.
Keywords: Fourier transform, Riesz potential, Dunkl transform, D-Riesz potential.
@article{CHEB_2019_20_1_a6,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Weighted inequalities for {Dunkl--Riesz} potential},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Weighted inequalities for Dunkl--Riesz potential
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 131
EP  - 147
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/
LA  - ru
ID  - CHEB_2019_20_1_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Weighted inequalities for Dunkl--Riesz potential
%J Čebyševskij sbornik
%D 2019
%P 131-147
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/
%G ru
%F CHEB_2019_20_1_a6
D. V. Gorbachev; V. I. Ivanov. Weighted inequalities for Dunkl--Riesz potential. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a6/

[1] Frostman O., Potentiel d'equilibre et capacite des ensembles avec quelques applications a la theorie des fonctions, These. Communic. Semin. Math. de l'Univ. de Lund, v. 3, 1935

[2] Riesz M., “L'integrale de Riemann-Liouville et le probleme de Cauchy”, Acta Math., 81:1 (1949), 1–222 | MR

[3] G. H. Hardy, J. E. Littelwood, “Some properties of fractional integrals, I”, Math. Zeit., 27 (1928), 565–606 | MR | Zbl

[4] Soboleff S., “Sur un théoréme d'analyse fonctionnelle”, Amer. Math. Soc. Transl., 1963, no. 2 (34), 39–68 | Zbl

[5] E. M. Stein, G. Weiss, “Fractional integrals on n-dimensional Euclidean space”, J. Math. Mech., 7:4 (1958), 503–514 | MR | Zbl

[6] C. F. Dunkl, “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl

[7] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2003, 93–135 | MR | Zbl

[8] S. Thangavelu, Y. Xu, “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | MR | Zbl

[9] Rösler M., “Positivity of Dunkl's intertwinning operator”, Duke Math. J., 98 (1999), 445–463 | MR | Zbl

[10] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 | MR | Zbl

[11] Trimèche K., “Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | MR | Zbl

[12] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L_p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI | MR

[13] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | MR | Zbl

[14] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, Riesz potential and maximal function for Dunkl transform, Preprint CRM, No 1238, Barcelona, 2018, 28 pp. | MR

[15] S. Hassani, S. Mustapha, M. Sifi, “Riesz potentials and fractional maximal function for the Dunkl transform”, J. Lie Theory, 19:4 (2009), 725–734 | MR | Zbl

[16] C. Abdelkefi, M. Rachdi, “Some properties of the Riesz potentials in Dunkl analysis”, Ricerche Mat., 64:4 (2015), 195–215 | MR | Zbl

[17] A. Nowak, K. Stempak, “Potential operators associated with Hankel and Hankel-Dunkl transforms”, J. d'Analyse Math., 131:1 (2017), 277–321 | MR | Zbl

[18] De Nápoli P. L., Drelichman I., Durán R. G., “On weighted inequalities for fractional integrals of radial functions”, Illinois J. Math., 55 (2011), 575–587 | MR

[19] Duoandikoetxea J., “Fractional integrals on radial functions with applications to weighted inequalities”, Ann. Mat. Pura Appl., 192 (2013), 553–568 | MR | Zbl

[20] B. S. Rubin, “One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions”, Math. Notes, 34:4 (1983), 751–757 | MR | Zbl

[21] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc., 54:2 (1996), 89–101 | MR | Zbl

[22] A. Kufner, B. Opic, Xardy-type inequalities, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, 1990, 333 pp. | MR

[23] A. Kufner, L. E. Persson, Weighted inequalities of Xardy type, World Scientific hrblishing Co. Pte. Ltd., Singopure-London, 2003, 358 pp. | MR