Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a5, author = {N. M. Glazunov}, title = {$p$-adic $L$-functions and $p$-adic multiple zeta values}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {112--130}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/} }
N. M. Glazunov. $p$-adic $L$-functions and $p$-adic multiple zeta values. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 112-130. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/
[1] Zagier D., “Periods of modular forms, traces of Hecke operators, and multiple $\zeta-$values”, Research into Automorphic Forms and $L-$functions, 843, Surikaisekikenkyusho Kokyuroku, Kyoto, 1993, 162–170 | MR
[2] Manin Yu. I., “Cyclotomic fields and modular curves”, UMN, 26:6 (1971), 7–78 | MR
[3] Manin Yu. I., “Parabolic points and zeta-functions of modular curves”, Math. USSR-Izv., 6:1 (1972), 19–64
[4] Deligne P., “Le groupe fondamental de la droite projective moins trois points”, Galois Groups over $\mathbb Q$, eds. Ihara et al., Springer Verlag, New York, 1989, 79–297 | MR
[5] P. Deligne, A. Goncharov, “Groupes fondamentaux motiviques de Tate mixte”, Ann. Sci. Ecole Norm. Sup. (4), 38:1 (2005), 1–56 | MR | Zbl
[6] Goncharov A., “Multiple $\zeta$-values, Galois groups, and geometry of modular varieties”, European Congr. of Mathematics, v. I, Progr. Math., 201, Birkhauser, Barcelona, 2000, 361–392 | MR
[7] Brown F., “Mixed Tate motives over Z”, Ann. of Math., 175:1 (2012,), 949–976 | MR | Zbl
[8] Glanois C., “Motivic unipotent fundamental groupoid of $\mathbb{G}_m \backslash \mu_N$ for $N = 2, 3, 4, 6, 8$ and Galois descents”, Journal of Number Theory, 160 (2016), 334–384 | MR | Zbl
[9] Ünver S., “$p$-adic multiple zeta values”, Journal of Number Theory, 108 (2004), 111–156 | MR | Zbl
[10] Furusho H., “$p$-adic multiple zeta values II. Tannakian interpretations”, Am. J. Math., 129 (2007), 1105–1144 | MR | Zbl
[11] Ünver S., “Cyclotomic $p$-adic multi-zeta values in depth two”, Manuscr. Math., 149:3–4 (2016), 405–441 | MR | Zbl
[12] Ihara Y., “Braids, Galois Groups, and Some Arithmetic Functions”, Proc. of the ICM 90, v. I, Springer-Verlag, Tokyo–Berlin–Heidelberg–New York, 1991, 99–120 | MR
[13] Kubota K., Leopoldt H. W., “Einep-adische Theorieder Zetawerte, I”, J. Reine Angew. Math., 214/215 (1964), 328–339 | MR | Zbl
[14] Iwasawa K., “Analogies between number fields and function fields”, Collected Papers, v. II, Springer-Verlag, Tokyo, 2001, 606–611 | MR
[15] Weber H., Lehrbuch der Algebra, v. III, F. Vieweg und Sohn, Braunschweig, 1908 | MR
[16] Hasse H., “Zum Hauptidealsatz der komplexen Multiplikation”, Monatshefte fur Math., 38 (1931), 315–322 ; 323–330; 331–344 | MR
[17] Deuring M., “Klassenkorper der komplexen Multiplikation”, Enzyklopadie der Math. Wiss., 12:10-II (1961), 23 | MR
[18] Borevich Z., Shafarevich I., Number Theory, Pure and Applied mathematics, Academic Press, New York, 1986 | MR | MR
[19] Voronoi G. F., Collected Works, v. I, AN UkrSSR, Kiev, 1952 | MR
[20] Hashimoto M., “Equivariant class group II: Enriched descent theorem”, Commun. Algebra, 45:4 (2017), 1509–1532 | MR | Zbl
[21] Koblitz N., $p$-adic numbers, $p$-adic analysis and zeta-functions, Bibphysmat, Igevsk, 1997 | MR
[22] Parshin A., “A generalization of Jacobian variety”, Izv. Akad. Nauk SSSR Ser Mat., 30:1 (1966), 175–182 | MR | Zbl
[23] Chen K., “Iterated path integrals”, Bull. Amer. Math. Soc., 83 (1977), 831–879 | MR | Zbl
[24] J. Cassels, A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, London, 2003, 366 pp.
[25] M. Hazewinkel, Formal Groups, Academic Press, NY, 1977, 573 pp.
[26] O. N. Vvedenskii, “On local “class fields” of elliptic curves"”, Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser. Mat., 37:1 (1973), 20–88 | MR
[27] O. N. Vvedenskii, “On “universal norms” of formal groups over integer ring of local fields”, Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser Mat., 37 (1973), 737–751 (In Russian) | MR
[28] Drinfeld V., “On quasi-triangular quasi-Hopf algebras and one group that is closely related to $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$”, Leningrad Math. J., 2:4 (1991), 829–860 | MR | Zbl | Zbl
[29] Goncharov A., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128:2 (2005), 209–284 | MR | Zbl
[30] Deligne P., “Le groupe fondamental unipotent motivique de $G_m\setminus \mu_N$ pour $N = 2,3,4,6$ or $8$”, Publ. Math. IHES, 112:1 (2010), 101–141 | MR | Zbl
[31] Kudla K., “Special cycles and derivatives of Eisenstein series”, Math. Sci. Research Institute Publ., 49, Cambridge Univ. Press, 2004, 243–270 | MR | Zbl
[32] Kudla K., Rapoport M., “Special cycles on unitary Shimura varieties II: global theory”, J. Reine Angew. Math., 697 (2014), 91–157 | MR | Zbl
[33] Kudla K., “Derivatives of Eisenstein Series and Arithmetic Geometry”, Proc. of ICM 2002, v. II, Higher Education Press, Beijing, 2004, 173–183 | MR
[34] K. Kudla, M. Rapoport, “Special cycles on unitary Shimura varieties I. Unramified local theory”, Invent. math., 184 (2011), 629–682 | MR | Zbl
[35] Harashita S., “Geometry and analysis of automorphic forms of several variables”, Proc. Int. Symp. in honor of Takayuki Oda on the occasion of his 60th birthday (Univ. of Tokyo, Tokyo, Japan, September 14–17, 2009), Series on Number Theory and its Applications, 7, World Scientific, Hackensack, NJ, 2012, 41–55 | MR | Zbl
[36] Hironaka Y., “Local Zeta functions on Hermitian forms and its application to local densities”, Number Theory, 71 (1998), 40–64 | MR | Zbl
[37] Sankaran S., “Improper intersections of Kudla-Rapoport divisors and Eisenstein serie”, J. Inst. Math. Jussieu, 16:5 (2017), 899–945 | MR | Zbl
[38] Sankaran S., “Unitary cycles on Shimura curves and the Shimura lift I”, Documenta Math., 18 (2013), 1403–1464 | MR | Zbl
[39] Glazunov N. M., Algorithms and programs for research in Diophantine geometry, Preprint 73-16, Institute of Cybernetics of the Ukrainian Academy of Sciences, Kiev, 1973, 26 pp.
[40] Glazunov N., “Class groups of rings with divisor theory, $ L $-functions and moduli spaces”, Int. conf. “Algebraic and geometric methods of analysis”, Book of abstracts, Institute of Mathematics, Odessa–Kiev, 2018, 19–20 https://www.imath.kiev.ua/t̃opology/conf/agma2018
[41] Glazunov N., “Class Fields, Riemann Surfaces and (Multiple) Zeta Values”, Proc. 3-d Int.l Conf. Computer Algebra Information Technologies, Mechnikov National University, Odessa, 2018, 152–154
[42] Glazunov N., “Quadratic forms, algebraic groups and number theory”, Chebyshevskii Sbornik, 16:4 (2015), 77–89 | MR | Zbl
[43] Glazunov N., “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146 | MR | Zbl