$p$-adic $L$-functions and $p$-adic multiple zeta values
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 112-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is dedicated to the memory of George Voronoi. It is concerned with ($p$-adic) $L$-functions (in partially ($p$-adic) zeta functions) and cyclotomic ($p$-adic) (multiple) zeta values. The beginning of the article contains a short summary of the results on the Bernoulli numbers associated with the studies of George Voronoi. Results on multiple zeta values have presented by D. Zagier, by P. Deligne and A.Goncharov, by A. Goncharov, by F. Brown, by C. Glanois and others. S. Ünver have investigated $p$-adic multiple zeta values in the depth two. Tannakian interpretation of $p$-adic multiple zeta values is given by H. Furusho. Short history and connections among Galois groups, fundamental groups, motives and arithmetic functions are presented in the talk by Y. Ihara. Results on multiple zeta values, Galois groups and geometry of modular varieties has presented by Goncharov. Interesting unipotent motivic fundamental group is defined and investigated by Deligne and Goncharov. The framework of ($p$-adic) $L$-functions and ($p$-adic) (multiple) zeta values is based on Kubota-Leopoldt $p$-adic $L$-functions and arithmetic $p$-adic $L$-functions by Iwasawa. Motives and ($p$-adic) (multiple) zeta values by Glanois and by Ünver, improper intersections of Kudla-Rapoport divisors and Eisenstein series by Sankaran are reviewed. More fully the content of the article can be found at the following table of contents: Introduction. 1. Voronoi-type congruences for Bernoulli numbers. 2. Riemann zeta values. 3. On class groups of rings with divisor theory. Imaginary quadratic and cyclotomic fields. 4. Eisenstein Series. 5. Class group, class fields and zeta functions. 6. Multiple zeta values. 7. Elements of non-Archimedean local fields and $ p-$adic analysis. 8. Iterated integrals and (multiple) zeta values. 9. Formal groups and $p$-divisible groups. 10. Motives and ($p$-adic) (multiple) zeta values. 11. On the Eisenstein series associated with Shimura varieties. Sections 1-9 and subsection 11.1 (On some Shimura varieties and Siegel modular forms) can be considered as an elementary introduction to the results of section 10 and subsection 11.2 (On improper intersections of Kudla-Rapoport divisors and Eisenstein series). Numerical examples are included.
Keywords: $p$-adic interpolation, ($p$-adic) $L$-function, Eisenstein Series, comparison isomorphism, crystalline Frobenius morphism, de Rham fundamental group, ($p$-adic) multiple zeta value, Iwasawa theory, Shimura variety, arithmetic cycles.
@article{CHEB_2019_20_1_a5,
     author = {N. M. Glazunov},
     title = {$p$-adic $L$-functions and $p$-adic multiple zeta values},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {112--130},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - $p$-adic $L$-functions and $p$-adic multiple zeta values
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 112
EP  - 130
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/
LA  - en
ID  - CHEB_2019_20_1_a5
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T $p$-adic $L$-functions and $p$-adic multiple zeta values
%J Čebyševskij sbornik
%D 2019
%P 112-130
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/
%G en
%F CHEB_2019_20_1_a5
N. M. Glazunov. $p$-adic $L$-functions and $p$-adic multiple zeta values. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 112-130. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a5/

[1] Zagier D., “Periods of modular forms, traces of Hecke operators, and multiple $\zeta-$values”, Research into Automorphic Forms and $L-$functions, 843, Surikaisekikenkyusho Kokyuroku, Kyoto, 1993, 162–170 | MR

[2] Manin Yu. I., “Cyclotomic fields and modular curves”, UMN, 26:6 (1971), 7–78 | MR

[3] Manin Yu. I., “Parabolic points and zeta-functions of modular curves”, Math. USSR-Izv., 6:1 (1972), 19–64

[4] Deligne P., “Le groupe fondamental de la droite projective moins trois points”, Galois Groups over $\mathbb Q$, eds. Ihara et al., Springer Verlag, New York, 1989, 79–297 | MR

[5] P. Deligne, A. Goncharov, “Groupes fondamentaux motiviques de Tate mixte”, Ann. Sci. Ecole Norm. Sup. (4), 38:1 (2005), 1–56 | MR | Zbl

[6] Goncharov A., “Multiple $\zeta$-values, Galois groups, and geometry of modular varieties”, European Congr. of Mathematics, v. I, Progr. Math., 201, Birkhauser, Barcelona, 2000, 361–392 | MR

[7] Brown F., “Mixed Tate motives over Z”, Ann. of Math., 175:1 (2012,), 949–976 | MR | Zbl

[8] Glanois C., “Motivic unipotent fundamental groupoid of $\mathbb{G}_m \backslash \mu_N$ for $N = 2, 3, 4, 6, 8$ and Galois descents”, Journal of Number Theory, 160 (2016), 334–384 | MR | Zbl

[9] Ünver S., “$p$-adic multiple zeta values”, Journal of Number Theory, 108 (2004), 111–156 | MR | Zbl

[10] Furusho H., “$p$-adic multiple zeta values II. Tannakian interpretations”, Am. J. Math., 129 (2007), 1105–1144 | MR | Zbl

[11] Ünver S., “Cyclotomic $p$-adic multi-zeta values in depth two”, Manuscr. Math., 149:3–4 (2016), 405–441 | MR | Zbl

[12] Ihara Y., “Braids, Galois Groups, and Some Arithmetic Functions”, Proc. of the ICM 90, v. I, Springer-Verlag, Tokyo–Berlin–Heidelberg–New York, 1991, 99–120 | MR

[13] Kubota K., Leopoldt H. W., “Einep-adische Theorieder Zetawerte, I”, J. Reine Angew. Math., 214/215 (1964), 328–339 | MR | Zbl

[14] Iwasawa K., “Analogies between number fields and function fields”, Collected Papers, v. II, Springer-Verlag, Tokyo, 2001, 606–611 | MR

[15] Weber H., Lehrbuch der Algebra, v. III, F. Vieweg und Sohn, Braunschweig, 1908 | MR

[16] Hasse H., “Zum Hauptidealsatz der komplexen Multiplikation”, Monatshefte fur Math., 38 (1931), 315–322 ; 323–330; 331–344 | MR

[17] Deuring M., “Klassenkorper der komplexen Multiplikation”, Enzyklopadie der Math. Wiss., 12:10-II (1961), 23 | MR

[18] Borevich Z., Shafarevich I., Number Theory, Pure and Applied mathematics, Academic Press, New York, 1986 | MR | MR

[19] Voronoi G. F., Collected Works, v. I, AN UkrSSR, Kiev, 1952 | MR

[20] Hashimoto M., “Equivariant class group II: Enriched descent theorem”, Commun. Algebra, 45:4 (2017), 1509–1532 | MR | Zbl

[21] Koblitz N., $p$-adic numbers, $p$-adic analysis and zeta-functions, Bibphysmat, Igevsk, 1997 | MR

[22] Parshin A., “A generalization of Jacobian variety”, Izv. Akad. Nauk SSSR Ser Mat., 30:1 (1966), 175–182 | MR | Zbl

[23] Chen K., “Iterated path integrals”, Bull. Amer. Math. Soc., 83 (1977), 831–879 | MR | Zbl

[24] J. Cassels, A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, London, 2003, 366 pp.

[25] M. Hazewinkel, Formal Groups, Academic Press, NY, 1977, 573 pp.

[26] O. N. Vvedenskii, “On local “class fields” of elliptic curves"”, Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser. Mat., 37:1 (1973), 20–88 | MR

[27] O. N. Vvedenskii, “On “universal norms” of formal groups over integer ring of local fields”, Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser Mat., 37 (1973), 737–751 (In Russian) | MR

[28] Drinfeld V., “On quasi-triangular quasi-Hopf algebras and one group that is closely related to $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$”, Leningrad Math. J., 2:4 (1991), 829–860 | MR | Zbl | Zbl

[29] Goncharov A., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128:2 (2005), 209–284 | MR | Zbl

[30] Deligne P., “Le groupe fondamental unipotent motivique de $G_m\setminus \mu_N$ pour $N = 2,3,4,6$ or $8$”, Publ. Math. IHES, 112:1 (2010), 101–141 | MR | Zbl

[31] Kudla K., “Special cycles and derivatives of Eisenstein series”, Math. Sci. Research Institute Publ., 49, Cambridge Univ. Press, 2004, 243–270 | MR | Zbl

[32] Kudla K., Rapoport M., “Special cycles on unitary Shimura varieties II: global theory”, J. Reine Angew. Math., 697 (2014), 91–157 | MR | Zbl

[33] Kudla K., “Derivatives of Eisenstein Series and Arithmetic Geometry”, Proc. of ICM 2002, v. II, Higher Education Press, Beijing, 2004, 173–183 | MR

[34] K. Kudla, M. Rapoport, “Special cycles on unitary Shimura varieties I. Unramified local theory”, Invent. math., 184 (2011), 629–682 | MR | Zbl

[35] Harashita S., “Geometry and analysis of automorphic forms of several variables”, Proc. Int. Symp. in honor of Takayuki Oda on the occasion of his 60th birthday (Univ. of Tokyo, Tokyo, Japan, September 14–17, 2009), Series on Number Theory and its Applications, 7, World Scientific, Hackensack, NJ, 2012, 41–55 | MR | Zbl

[36] Hironaka Y., “Local Zeta functions on Hermitian forms and its application to local densities”, Number Theory, 71 (1998), 40–64 | MR | Zbl

[37] Sankaran S., “Improper intersections of Kudla-Rapoport divisors and Eisenstein serie”, J. Inst. Math. Jussieu, 16:5 (2017), 899–945 | MR | Zbl

[38] Sankaran S., “Unitary cycles on Shimura curves and the Shimura lift I”, Documenta Math., 18 (2013), 1403–1464 | MR | Zbl

[39] Glazunov N. M., Algorithms and programs for research in Diophantine geometry, Preprint 73-16, Institute of Cybernetics of the Ukrainian Academy of Sciences, Kiev, 1973, 26 pp.

[40] Glazunov N., “Class groups of rings with divisor theory, $ L $-functions and moduli spaces”, Int. conf. “Algebraic and geometric methods of analysis”, Book of abstracts, Institute of Mathematics, Odessa–Kiev, 2018, 19–20 https://www.imath.kiev.ua/t̃opology/conf/agma2018

[41] Glazunov N., “Class Fields, Riemann Surfaces and (Multiple) Zeta Values”, Proc. 3-d Int.l Conf. Computer Algebra Information Technologies, Mechnikov National University, Odessa, 2018, 152–154

[42] Glazunov N., “Quadratic forms, algebraic groups and number theory”, Chebyshevskii Sbornik, 16:4 (2015), 77–89 | MR | Zbl

[43] Glazunov N., “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146 | MR | Zbl