Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a3, author = {A. Vaiginyt\.{e}}, title = {Extention of the {Laurin\v{c}ikas--Matsumoto} theorem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {82--93}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/} }
A. Vaiginytė. Extention of the Laurin\v{c}ikas--Matsumoto theorem. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/
[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD Thesis, Indian statistical Institute, 1981
[2] P. Billingsley, Convergence of Probability measures, Wiley, New York, 1968 | MR | Zbl
[3] A. Dubickas, A. Laurinčikas, “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Hambg., 86 (2016), 79–87 | MR | Zbl
[4] S. M. Gonek, “Analytic properties of zeta and $L$-functions”, Math. Z., 181 (1982), 319–334 | MR
[5] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I; II”, Math. Ann., 114 (1937), 1–28 ; 316–351 | MR
[6] A. Good, “On the distribution of values of Riemann's zeta-function”, Act. Arith., 38 (1981), 347–388 | MR | Zbl
[7] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht–Boston–London, 1996 | MR
[8] A. Laurinčikas, “The universality theorem”, Lith. Math. J., 23 (1983), 283–289 | Zbl
[9] A. Laurinčikas, “The universality theorem II”, Lith. Math. J., 24 (1984), 143–149 | Zbl
[10] A. Laurinčikas, K. Matsumoto, “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | MR | Zbl
[11] A. Laurinčikas, L. Meška, “Sharpening of the universality inequality”, Math. Notes, 96 (2014), 971–976 | MR | Zbl
[12] A. Laurinčikas, L. Meška, “On the modification of the universality of the Hurwitz zeta-function”, Nonlinear Anal. Model. Control., 21 (2016), 564–576 | MR | Zbl
[13] Mergelyan S. N., “Uniform approximations of functions of a complex variable”, Uspehi Matem. Nauk (N.S.), 7 (1952), 31–122 | MR | Zbl
[14] A. Reich, “Zur Universalität und Hypertranszendenz der Dedekindschen Zetafunktion”, Abh. Braunschweig. Wiss. Ges., 33 (1982), 197–203 | MR | Zbl
[15] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | MR | Zbl