Extention of the Laurin\v{c}ikas--Matsumoto theorem
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 82-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1975, S. M. Voronin discovered the remarkable universality property of the Riemann zeta-function $\zeta(s)$. He proved that analytic functions from a wide class can be approximated with a given accuracy by shifts $\zeta(s+i\tau)$, $\tau \in \mathbb{R},$ of one and the same function $\zeta(s)$. The Voronin discovery inspired to continue investigations in the field. It turned out that some other zeta and $L$-functions as well as certain classes of Dirichlet series are universal in the Voronin sense. Among them, Dirichlet $L$-functions, Dedekind, Hurwitz and Lerch zeta-functions. In 2001, A. Laurinčikas and K. Matsumoto obtained the universality of zeta-functions $\zeta(s, F)$ attached to certain cusp forms $F$. In the paper, the extention of the Laurinčikas-Matsumoto theorem is given by using the shifts $\zeta (s+i \varphi(\tau), F)$ for the approximation of analytic functions. Here $\varphi(\tau)$ is a differentiable real-valued positive increasing function, having, for $\tau \geqslant \tau_0,$ the monotonic continuous positive derivative, satisfying, for $\tau \rightarrow \infty,$ the conditions ${\frac{1}{\varphi'(\tau)}=o(\tau)}$ and $\varphi(2 \tau) \max_{\tau \leqslant t \leqslant 2\tau} \frac{1}{\varphi'(t)} \ll \tau$. More precisely, in the paper it is proved that, if $\kappa$ is the weight of the cusp form $F$, $K$ is the compact subset of the strip $\left\{s \in \mathbb{C}: \frac{\kappa}{2} \sigma \frac{\kappa+1}{2} \right\}$ with connected complement, and $f(s)$ is a continuous non-vanishing function on $K$ which is analytic in the interior of $K,$ then , for every $\varepsilon > 0,$ the set $\left\{\tau \in \mathbb{R}: \sup_{s \in K} | \zeta (s+i \varphi(\tau), F)-f(s) | \varepsilon \right\}$ has a positive lower density.
Keywords: zeta-function of cusp forms, Hecke-eigen cusp form, universality.
@article{CHEB_2019_20_1_a3,
     author = {A. Vaiginyt\.{e}},
     title = {Extention of the {Laurin\v{c}ikas--Matsumoto} theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {82--93},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/}
}
TY  - JOUR
AU  - A. Vaiginytė
TI  - Extention of the Laurin\v{c}ikas--Matsumoto theorem
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 82
EP  - 93
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/
LA  - en
ID  - CHEB_2019_20_1_a3
ER  - 
%0 Journal Article
%A A. Vaiginytė
%T Extention of the Laurin\v{c}ikas--Matsumoto theorem
%J Čebyševskij sbornik
%D 2019
%P 82-93
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/
%G en
%F CHEB_2019_20_1_a3
A. Vaiginytė. Extention of the Laurin\v{c}ikas--Matsumoto theorem. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a3/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD Thesis, Indian statistical Institute, 1981

[2] P. Billingsley, Convergence of Probability measures, Wiley, New York, 1968 | MR | Zbl

[3] A. Dubickas, A. Laurinčikas, “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Hambg., 86 (2016), 79–87 | MR | Zbl

[4] S. M. Gonek, “Analytic properties of zeta and $L$-functions”, Math. Z., 181 (1982), 319–334 | MR

[5] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I; II”, Math. Ann., 114 (1937), 1–28 ; 316–351 | MR

[6] A. Good, “On the distribution of values of Riemann's zeta-function”, Act. Arith., 38 (1981), 347–388 | MR | Zbl

[7] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht–Boston–London, 1996 | MR

[8] A. Laurinčikas, “The universality theorem”, Lith. Math. J., 23 (1983), 283–289 | Zbl

[9] A. Laurinčikas, “The universality theorem II”, Lith. Math. J., 24 (1984), 143–149 | Zbl

[10] A. Laurinčikas, K. Matsumoto, “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | MR | Zbl

[11] A. Laurinčikas, L. Meška, “Sharpening of the universality inequality”, Math. Notes, 96 (2014), 971–976 | MR | Zbl

[12] A. Laurinčikas, L. Meška, “On the modification of the universality of the Hurwitz zeta-function”, Nonlinear Anal. Model. Control., 21 (2016), 564–576 | MR | Zbl

[13] Mergelyan S. N., “Uniform approximations of functions of a complex variable”, Uspehi Matem. Nauk (N.S.), 7 (1952), 31–122 | MR | Zbl

[14] A. Reich, “Zur Universalität und Hypertranszendenz der Dedekindschen Zetafunktion”, Abh. Braunschweig. Wiss. Ges., 33 (1982), 197–203 | MR | Zbl

[15] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | MR | Zbl