Historical aspects of mathematical analysis of metal material deformation diagrams
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 405-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a retrospective of the formation and development of one of the methods to study the materials strain hardening – mathematical analysis of strain diagrams. Discussed in detail the most important mathematically reasonable direction of the analysis of the diagrams of deformation based on the use of their rebuild in the coordinates, due to the defined model representations, describe the process of strain hardening. The paper illustrates changing of analysis methods of stretching curves (load-elongation) and their mathematical description starting from representations of the 17${}^{th}$–18${}^{th}$ centuries in the works by L. da Vinci, R. Hooke, I. Newton up to the present day. A phased development of the mathematical description of strain hardening using strain diagrams from phenomenological approaches within the theories of Ludwik, Hollomon, Jaul-Krussard to modern physical theories of strain hardening by J. Taylor, N.F. Mott, E. Orovana, Ya.I. Frenkel, Ya.B. Friedman, A. Zeger, A. Cottrell, J. Reed, based on the analysis of the evolution of complexes of structural defects, the results of metallographic grounded thin metalphysical experiments. A critical analysis of the shortcomings of modern mathematical methods for estimating the parameters of strain diagrams in terms of the degradation and destruction (damage) development in the testing process is given. For example, mild steel experimental testing of the use of the listed model representations in comparison with the approaches Ludvika, Hollomon, Joule-Crosara to assess their conformity with modern views on the contribution of degradation and destruction processes (damage) to work hardening. The quantitative analysis of the coefficients of hardening, q-factor and destruction, which allowed to link the stages of deformation hardening with the parallel development of two main processes: the transformation of dislocation substructure and the development of deformation damage such as microcracks and pores. The critical values of deformation determining the boundaries of the ranges of sharp changes in the parameters of deformation hardening and destruction are revealed.
Keywords: metal alloys, hardening, strain, mathematical analysis, diagram, tensile, damage, steel, mathematical model, fracture, load, plasticity.
@article{CHEB_2019_20_1_a25,
     author = {A. N. Chukanov and A. E. Gvozdev and A. N. Sergeev and S. N. Kutepov and P. N. Medvedev and D. V. Maliy and A. A. Yakovenko and I. F. Shiroky},
     title = {Historical aspects of mathematical analysis of metal material deformation diagrams},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {405--423},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a25/}
}
TY  - JOUR
AU  - A. N. Chukanov
AU  - A. E. Gvozdev
AU  - A. N. Sergeev
AU  - S. N. Kutepov
AU  - P. N. Medvedev
AU  - D. V. Maliy
AU  - A. A. Yakovenko
AU  - I. F. Shiroky
TI  - Historical aspects of mathematical analysis of metal material deformation diagrams
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 405
EP  - 423
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a25/
LA  - ru
ID  - CHEB_2019_20_1_a25
ER  - 
%0 Journal Article
%A A. N. Chukanov
%A A. E. Gvozdev
%A A. N. Sergeev
%A S. N. Kutepov
%A P. N. Medvedev
%A D. V. Maliy
%A A. A. Yakovenko
%A I. F. Shiroky
%T Historical aspects of mathematical analysis of metal material deformation diagrams
%J Čebyševskij sbornik
%D 2019
%P 405-423
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a25/
%G ru
%F CHEB_2019_20_1_a25
A. N. Chukanov; A. E. Gvozdev; A. N. Sergeev; S. N. Kutepov; P. N. Medvedev; D. V. Maliy; A. A. Yakovenko; I. F. Shiroky. Historical aspects of mathematical analysis of metal material deformation diagrams. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 405-423. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a25/

[1] Chukanov A. N., Physical and mechanical regularities of the formation of the limit state and the development of local destruction in metal materials, The dissertation on competition of a scientific degree. Doctor of technology degree, TulGU, Tula, Rossiya, 2001, 381 pp.

[2] A. N. Chukanov, N. N. Sergeev, A. E. Gvozdev et al., Condensed matter physics: structural defects and creation of theories of materials hardening, TulGU, Tula, Rossiya, 298 pp.

[3] Oding I. A., Permissible stresses in mechanical engineering and cyclic strength of metals, Mashgiz, M., Rossiya, 1961, 258 pp.

[4] Oding I. A., Liberov Y. P., “Development of damage in Nickel under static tension”, Izvestiya Akademii Nauk SSSR. Metallurgiya i toplivo, 1962, no. 6, 125–130

[5] Oding I. A., Liberov Y. P., “Accumulation of defects and formation of submicro-cracks under static Armco-iron tension”, Izvestiya Akademii Nauk SSSR. Metallurgiya i gornoe delo, 1964, no. 1, 113–116

[6] Oding I. A., Liberov Y. P., “Appearance of submicroscopic cracks in statically deformable plastic materials”, Izvestiya Akademii Nauk SSSR. Metallurgiya i gornoe delo, 1964, no. 2, 85–91

[7] Rovinskii B. M., Rybakova L. M., “Stress, strain and structural changes in technical iron during cyclic deformation”, Izvestiya Akademii Nauk SSSR. Metally, 1965, no. 3, 164–171

[8] Babich V. K., Pirogov V. A., Vakulenko I. A., “Effect of carbon content and structural state on the strain hardening characteristics of carbon steels”, Strength of Materials, 1984, no. 4, 52–55

[9] Rovinskii B. M., Rybakova L. M., “On the residual strain obtained in uniaxial tension”, Engineering Science, 1969, no. 5, 51–60

[10] Rovinskii B. M., Rybakova L. M., “About the stress and the irreversible plastic deformation in metals under simple tension”, Izvestiya Akademii Nauk SSSR, otdelenie tekhnicheskih nauk, 1962, no. 5, 68–74

[11] Rybakova L. M., “Degradation of metals in bulk and surface plastic deformation”, Metallovedenie i termicheskaya obrabotka metallov, 1980, no. 8, 17–22

[12] Poliakov S. N., Kudlai A. S., Naugolnikova L. M. et al., “Methods of constructing and analyzing true stretching diagrams”, Zavod. labor., no. 6, 741–744

[13] Polyakov S. N., Naugolnykh L. M., Kudlay A. S., “Methods of analysis of the true tensile diagrams”, Zavod. labor., 1969, no. 3, 347–349

[14] H. Conrad, S. Fenerstein, L. Rice, “Effect of grain size on the dislocation density and flow stress of niobium”, Mater. Sci. Eng., 1967, no. 3, 157–168

[15] Van den Beukel A., “Grain size dependence of the dislocation in cold worked metals”, Scripta met., 1978, no. 9, 809–813

[16] Prusakov B. A., Surin A. I., Tronza E. I., “The method of determining the destructive characteristics of mechanical properties of metallic materials”, Zavod. labor., 1991, no. 8, 69–71

[17] Griffits A. A., “The phenomena of fracture and flow in solids”, Metallovedenie i termicheskaya obrabotka metallov, 1995, no. 1, 9–14

[18] Kalachev M. I., Deformation hardening of metals, Science and Technology, Minsk, 1980, 256 pp.

[19] Trefilov V. I., Moiseev V. F., Pechkovskii E. P. et al., Strain hardening and fracture of polycrystalline metals, Nauk. Dumka, Kiev, 248 pp.

[20] Merenkova R. F., Koshelev P. F., “Microstructure picture in plastic and of Quasibrittle fracture of Armco-iron”, Problemy prochnosti, 1975, no. 9, 73–77

[21] Chukanov A. N., Soldatova E. I., “Analytical description of the diagrams of strain and accumulation of damage to mild steel”, Izvestiia TulGU. Materialovedenie, 2000, no. 1, 151–155

[22] A. N. Chukanov, D. M. Levin, A. A. Yakovenko, “Use and Prospects for the Internal Friction Method in Assessing the Degradation and Destruction of Iron-Carbon Alloys”, Bulletin of the Russian Academy of Sciences. Physics, 75:10 (2011), 1340–1344

[23] Shorshorov M. Kh., Gvozdev A. E., Sergeev A. N. et al., Modeling of processes of resource-saving processing of ingot, powder, nanostructured and composite materials, TulGU, Tula, Rossiya, 359 pp.

[24] Gvozdev A. E., Zhuravlev G. M., Kuzovleva O. V., Bases of formation of the state of high deformation ability of metal systems, TulGU, Tula, Rossiya, 2018, 382 pp.

[25] Zhuravlev G. M., Gvozdev A. E., Plastic dilatancy and deformation damage of metals and alloys, TulGU, Tula, Rossiya, 2014, 114 pp.

[26] Zhuravlev G. M., Gvozdev A. E., Processing of steels and alloys in the temperature range of phase transformations, TulGU, Tula, Rossiya, 2016, 320 pp.

[27] Makarov E. S., Gvozdev A. E., Zhuravlev G. M., Theory of plasticity gelatinous environments, TulGU, Tula, Rossiya, 2015, 337 pp.

[28] A. E. Gvozdev, D. N. Bogolyubova, N. N. Sergeev, A. G. Kolmakov, D. A. Provotorov, I. V. Tikhonova, “Features of softening processes of aluminum, copper, and their alloys under hot deformation”, Inorganic Materials: Applied Research, 6:1 (2015), 32–40

[29] A. E. Gvozdev, I. V. Minaev, N. N. Sergeev, A. G. Kolmakov, D. A. Provotorov, I. V. Tikhonova, “Grain size effect of austenite on the kinetics of pearlite transformation in low- and medium-carbon low-alloy steels”, Inorganic Materials: Applied Research, 6:1 (2015), 41–44

[30] A. E. Gvozdev, N. N. Sergeyev, I. V. Minayev, A. G. Kolmakov, I. V. Tikhonova, “Role of nucleation in the development of first-order phase transformations”, Inorganic Materials: Applied Research, 6:4 (2015), 283–288

[31] A. E. Gvozdev, I. V. Golyshev, I. V. Minayev, A. N. Sergeyev, N. N. Sergeyev, I. V. Tikhonova, D. M. Khonelidze, A. G. Kolmakov, “Multiparametric optimization of laser cutting of steel sheets”, Inorganic Materials: Applied Research, 6:4 (2015), 305–310 | MR

[32] A. D. Breki, V. V. Medvedeva, N. A. Krylov, S. E. Aleksandrov, A. G. Kolmakov, A. E. Gvozdev, N. N. Sergeev, D. A. Provotorov, Y. A. Fadin, “Antiwear properties of composite greases “litol-24-magnesium hydrosilicate particles””, Inorganic Materials: Applied Research, 9:1 (2018), 21–25 | MR

[33] N. N. Sergeev, I. V. Minaev, A. E. Gvozdev, A. E. Cheglov, I. A. Tsyganov, I. V. Tikhonova, E. S. Alyavdina, O. M. Gubanov, A. D. Breki, “Decarburization and the influence of laser cutting on steel structure”, Steel in Translation, 48:5 (2018), 313–319

[34] A. D. Breki, T. S. Kol'tsova, A. N. Skvortsova, O. V. Tolochko, S. E. Aleksandrov, A. G. Kolmakov, A. A. Lisenkov, Y. A. Fadin, A. E. Gvozdev, D. A. Provotorov, “Tribotechnical properties of composite material “aluminum-carbon nanofibers” under friction on steels 12KH1 and SHKH15”, Inorganic Materials: Applied Research, 9:4 (2018), 639–643