Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a2, author = {Yu. A. Basalov}, title = {Estimation of the constant of the best simultaneous diophanite approximations for $n=5$ and $n=6$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {66--81}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a2/} }
TY - JOUR AU - Yu. A. Basalov TI - Estimation of the constant of the best simultaneous diophanite approximations for $n=5$ and $n=6$ JO - Čebyševskij sbornik PY - 2019 SP - 66 EP - 81 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a2/ LA - ru ID - CHEB_2019_20_1_a2 ER -
Yu. A. Basalov. Estimation of the constant of the best simultaneous diophanite approximations for $n=5$ and $n=6$. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 66-81. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a2/
[1] Basalov Yu. A., On estimating the constant of simultaneous Diophantine approximation, arXiv: (data obrascheniya: 09.04.2019) 1804.05385
[2] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | MR | Zbl
[3] Cusick T. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | MR | Zbl
[4] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | MR | Zbl
[5] Finch S. R., Mathematical Constants, Encyclopedia of Mathematics and its Applications, 94, Cambridge University Press, 2003 | MR | Zbl
[6] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | MR
[7] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | MR | Zbl
[8] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche”, Math. Ann., 39 (1891), 279–284 | MR
[9] Krass S., “Estimates for $n$-dimensional Diophantine approximation constants for $ n \geq 4 $”, J. Number Theory, 20:2 (1985), 172–176 | MR | Zbl
[10] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | MR | Zbl
[11] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | MR | Zbl
[12] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | MR | Zbl
[13] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl
[14] Nowak W. G., “Lower bounds for simultaneous Diophantine approximation constants”, Comm. Math., 22:1 (2014), 71–76 | MR | Zbl
[15] Nowak W. G., “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem”, Essays in mathematics and its applications, eds. T. M. Rassias, P. M. Pardalos, Springer, Switzerland, 2016, 181–197 | MR | Zbl
[16] Yu. A. Basalov, “On the history of estimates of the constant of the best joint Diophantine approximations”, Chebyshevskii sbornik, 19:2 (2018), 388–405 | DOI
[17] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Mir, 1965 | MR
[18] N. G. Moshchevitin, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239 (2002), 268–274
[19] W. M. Schmidt, Diophantine Approximation, Mir, 1983 | MR
[20] A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/