Generalized Gaussian sums and Bernoulli polynomials
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 284-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conception of Generalized Gaussian Sum $G_f(m)$ for a periodic arithmetical functon with a period, is equal prime number $q,$ for integers $m,n$ is introduce: $$ G_f(m)=\sum_{n=1}^{q-1}\left(\frac nq\right)f\left(\frac{mn}q\right). $$ Here are considered the particular cases $f(x)=B_\nu(\{x\}), \nu\geq 1,$ where $B_\nu(x)$ — Bernoulli polynomials.The paper uses the technique of finite Fourier series. If the function $f\left(\frac{k}{q}\right)$ is defined at $k=0,1,\ldots,q-1$, it can be decomposed into a finite Fourier series $$ f\left(\frac{k}{q}\right)=\sum_{m=0}^{q-1}c_me^{2\pi i\frac{mk}{q}}, \quad c_m=\frac{1}{q}\sum_{k=0}^{q-1}f\left(\frac{k}{q}\right)e^{-2\pi i\frac{mk}{q}}. $$By decomposition into a finite Fourier series of a generalized Gauss sum $$ G_\nu(m)=G_\nu(m;B_\nu)=\sum_{n=1}^{q-1}\left(\frac nq\right)B_\nu{\left(\left\{x+\frac{mn}q\right\}\right)} $$ for $\nu=1$ and $\nu=2$ , new formulas are found that Express the value of the Legendre symbol through the full sums of periodic functions. This circumstance makes it possible to obtain new analytical properties of the corresponding Dirichlet series and arithmetic functions, which will be the topic of the following works.An important property of the sums $G_1$ and $G_2$, namely:$G_1\ne 0,$ if $q\equiv 3\pmod 4$ and $G_1=0,$ if $q\equiv 1\pmod 4;$$G_2= 0,$ if $q\equiv 3\pmod 4$ and $G_2=\frac 1{q^2}\sum\limits_{n=1}^{q-1}n^2\left(\frac nq\right),$ if $q\equiv 1\pmod 4.$
Keywords: Gaussian sums, Bernoulli polynomials, the Legandre symbol.
@article{CHEB_2019_20_1_a17,
     author = {V. N. Chubarikov},
     title = {Generalized {Gaussian} sums and {Bernoulli} polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {284--293},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a17/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - Generalized Gaussian sums and Bernoulli polynomials
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 284
EP  - 293
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a17/
LA  - ru
ID  - CHEB_2019_20_1_a17
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T Generalized Gaussian sums and Bernoulli polynomials
%J Čebyševskij sbornik
%D 2019
%P 284-293
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a17/
%G ru
%F CHEB_2019_20_1_a17
V. N. Chubarikov. Generalized Gaussian sums and Bernoulli polynomials. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 284-293. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a17/

[1] Vinogradov I. M., Method of Trigonometric Sums in Number Theory, 2nd Ed., Nauka, M., 1980, 144 pp. | MR

[2] Hua L.-K., Selected Papers, Springer Verlag, New York, 1983, 888 pp. | MR | Zbl

[3] Arkhipov G. I., Selected Papers, Publ. House of Orjol Univ., Orjol, 2013, 464 pp.

[4] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric Sums in Number Theory and Analysis, De Gruyter expositions in mathematics, 39, Berlin–New York, 2004, 554 pp. | MR | Zbl

[5] Chubarikov V. N., “Linear arithmetic sums and Gaussian multiplication theorem”, Azerbaijan-Turkey-Ukrainian Int. Conf. “Mathematical Analysis, Differential Equations and their Applications” (September 08–13, 2015, Baku—Azerbaijan), 2015, 38

[6] Chubarikov V. N., “An elementary deduction of the estimate of of the complete rational arithmetical sum of polynomial”, Chebyshev Sbornik, 16:3(55) (2015), 452–461

[7] Chubarikov V. N., “The exponent of a convergence of the mean value of the complete rational arithmetical sums”, Chebyshev Sbornik, 16:4(56) (2015), 303–318 | MR | Zbl

[8] Chubarikov V. N., “Arithmetical sums of values of polynomial”, Doklady of RAS, 466:2 (2016), 152–153 | Zbl

[9] Chubarikov V. N., “Complete rational arithmetical sums”, Vestnik of Moscow State University. Serija I. Math., Mech., 2015, no. 1, 60–61

[10] K. F. Gauss, Works on the Number Theory, Publ. House of Academy of Sci. USSR, M., 1959, 979 pp.

[11] K. Ireland, M. Rosen, Classical introduction to modern number theory

[12] Davenport H., Multiplicative number theory, Markham Publ. Comp., Chicago, 1967 | MR | MR | Zbl

[13] Prachar K., Primzahlverteilung, Springer Verlag, Berlin–Göttingen–Heidelberg, 1957 | MR | Zbl

[14] Hasse H., Vorlesungen über zahlentheorie, Berlin, 1950 | MR | MR | Zbl

[15] Z. I. Borevich, I. R. Shafarevich, Number theory, Nauka, M., 1985 | MR

[16] A. O. Gelfond, Calculus of finite differences, Nauka, M., 1967, 376 pp. | MR

[17] N. M. Korobov, Number-theoretical methods in numerical analysis, 2nd Ed., MCCME, M., 2004, 288 pp.