A generalized limit theorem for the periodic Hurwitz zeta-function
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 261-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

Probabilistic methods are used in the theory of zeta-functions since Bohr and Jessen time (1910–1935). In 1930, they proved the first theorem for the Riemann zeta-function $\zeta(s)$, $s=\sigma+it$, which is a prototype of modern limit theorems characterizing the behavior of $\zeta(s)$ by weakly convergent probability measures. More precisely, they obtained that, for $\sigma>1$, there exists the limit $$ \lim_{T\to\infty} \frac{1}{T} \mathrm{J} \left\{t\in[0,T]: \log\zeta(\sigma+it)\in R\right\}, $$ where $R$ is a rectangle on the complex plane with edges parallel to the axes, and $\mathrm{J}A$ denotes the Jordan measure of a set $A\subset \mathbb{R}$. Two years latter, they extended the above result to the half-plane $\sigma>\frac{1}{2}$. Ideas of Bohr and Jessen were developed by Wintner, Borchsenius, Jessen, Selberg and other famous mathematicians. Modern versions of the Bohr-Jessen theorems, for a wide class of zeta-functions, were obtained in the works of K. Matsumoto. The theory of Bohr and Jessen is applicable, in general, for zeta-functions having Euler's product over primes. In the present paper, a limit theorem for a zeta-function without Euler's product is proved. This zeta-function is a generalization of the classical Hurwitz zeta-function. Let $\alpha$, $0\alpha \leqslant 1$, be a fixed parameter, and $\mathfrak{a}=\{a_m: m\in \mathbb{N}_0= \mathbb{N}\cup\{0\}\}$ be a periodic sequence of complex numbers. The periodic Hurwitz zeta-function $\zeta(s,\alpha; \mathfrak{a})$ is defined, for $\sigma>1$, by the Dirichlet series $$ \zeta(s,\alpha; \mathfrak{a})=\sum_{m=0}^\infty \frac{a_m}{(m+\alpha)^s}, $$ and is meromorphically continued to the whole complex plane. Let $\mathcal{B}(\mathbb{C})$ denote the Borel $\sigma$-field of the set of complex numbers, $\mathrm{meas}A$ be the Lebesgue measure of a measurable set $A\subset \mathbb{R}$, and let the function $\varphi(t)$ for $t\geqslant T_0$ have the monotone positive derivative $\varphi'(t)$ such that $(\varphi'(t))^{-1}=o(t)$ and $\varphi(2t) \max_{t\leqslant u\leqslant 2t} (\varphi'(u))^{-1}\ll t$. Then it is obtained in the paper that, for $\sigma>\frac{1}{2}$, $$ \frac{1}{T} \mathrm{meas}\left\{t\in[0,T]: \zeta(\sigma+i\varphi(t), \alpha; \mathfrak{a})\in A\right\},\quad A\in \mathcal{B}(\mathbb{C}), $$ converges weakly to a certain explicitly given probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ as $T\to\infty$.
Keywords: Haar measure, Hurwitz zeta-function, limit theorem, periodic Hurwitz zeta-function, weak convergence.
@article{CHEB_2019_20_1_a15,
     author = {A. Rimkevi\v{c}ien\.{e}},
     title = {A generalized limit theorem for the periodic {Hurwitz} zeta-function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {261--271},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a15/}
}
TY  - JOUR
AU  - A. Rimkevičienė
TI  - A generalized limit theorem for the periodic Hurwitz zeta-function
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 261
EP  - 271
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a15/
LA  - en
ID  - CHEB_2019_20_1_a15
ER  - 
%0 Journal Article
%A A. Rimkevičienė
%T A generalized limit theorem for the periodic Hurwitz zeta-function
%J Čebyševskij sbornik
%D 2019
%P 261-271
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a15/
%G en
%F CHEB_2019_20_1_a15
A. Rimkevičienė. A generalized limit theorem for the periodic Hurwitz zeta-function. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 261-271. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a15/

[1] P. Billingsley, Convergence of Probability Measures, John Wiley and Sons, New York, 1968 | MR | Zbl

[2] H. Bohr, B. Jessen, “Über die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung”, Acta Math., 54 (1930), 1–35 | MR | Zbl

[3] H. Bohr, B. Jessen, “Über die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung”, Acta Math., 58 (1932), 1–55 | MR

[4] D. Geniené, A. Rimkevičienė, “A joint limit theorem for periodic Hurwitz zeta-functions with algebraic irrational parameters”, Math. Modelling and Analysis, 18:1 (2013), 149–159 | MR | Zbl

[5] A. Javtokas, A. Laurinčikas, “On the periodic Hurwitz zeta-function”, Hardy-Ramanujan J., 29:3 (2006), 18–36 | MR | Zbl

[6] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht–Boston–London, 1996 | MR

[7] A. Laurinčikas, “The joint universality for periodic Hurwitz zeta-functions”, Analysis, 26:3 (2006), 419–428 | MR | Zbl

[8] K. Matsumoto, Probabilistic value-distribution theory of zeta-functions, 17 (2004), 51–71 | MR | Zbl

[9] G. Misevičius, A. Rimkevičienė, “Joint limit theorems for periodic Hurwitz zeta-functions. II”, Annales Univ. Sci. Budapest., Sect. Comp., 41 (2013), 173–185 | MR | Zbl

[10] A. Rimkevičienė, “Limit theorems for the periodic Hurwitz zeta-function”, Šiauliai Math. Semin., 5(13) (2010), 55–69 | MR | Zbl

[11] A. Rimkevičienė, “Joint limit theorems for the periodic Hurwitz zeta-functions”, Šiauliai Math. Semin., 6(14) (2011), 53–68 | MR | Zbl