Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a14, author = {V. P. Platonov and G. V. Fedorov}, title = {The criterion of periodicity of continued fractions of key elements in hyperelliptic fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {248--260}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a14/} }
TY - JOUR AU - V. P. Platonov AU - G. V. Fedorov TI - The criterion of periodicity of continued fractions of key elements in hyperelliptic fields JO - Čebyševskij sbornik PY - 2019 SP - 248 EP - 260 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a14/ LA - ru ID - CHEB_2019_20_1_a14 ER -
V. P. Platonov; G. V. Fedorov. The criterion of periodicity of continued fractions of key elements in hyperelliptic fields. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 248-260. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a14/
[1] N. H. Abel, “Uber die Integration der Differential-Formel $\rho \text{d}x / \sqrt{R}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826, no. 1, 185–221 | MR | Zbl
[2] P. L. Chebychev, “Sur l'integration de la differential $\frac{x+A}{\sqrt{x^4 + \alpha x^3 + \beta x^2 + \gamma}}\text{d}x$”, J. Math. Pures Appl., 2:9 (1864), 225–246
[3] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | MR | Zbl
[4] T. G. Berry, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | MR | Zbl
[5] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | MR | Zbl
[6] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | MR | Zbl
[7] Fedorov G. V., “Periodic continued fractions and S-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sbornik, 19:3 (2018) (In Russ.) | Zbl
[8] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | MR | Zbl
[9] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | MR | Zbl
[10] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | MR | Zbl
[11] Platonov V. P., Petrunin M. M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | MR | Zbl
[12] Platonov V. P., Petrunin M. M., “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | MR | Zbl
[13] Platonov V. P., Petrunin`M. M., “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | MR | Zbl
[14] V. S. Zhgoon, “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | MR
[15] Platonov V. P., Fedorov G. V., “S-Units and Periodicity of Continued Fractions in Hyperelliptic Fields”, Dokl. Math., 92:3 (2015), 752–756 | MR | Zbl
[16] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | MR | Zbl