Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a13, author = {Mordechay B. Levin}, title = {On a bounded remainder set for $(t,s)$ {sequences~I}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {224--247}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a13/} }
Mordechay B. Levin. On a bounded remainder set for $(t,s)$ sequences~I. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 224-247. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a13/
[1] Beck J., Chen W. W. L., Irregularities of Distribution, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[2] Bilyk D., “On Roth's orthogonal function method in discrepancy theory”, Unif. Distrib. Theory, 6:1 (2011), 143–184 | MR | Zbl
[3] Dick J., Pillichshammer F., Digital Nets and Sequences, Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[4] Grepstad S., Lev N., “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geom. Funct. Anal., 25:1 (2015), 87–133 | MR | Zbl
[5] Hellekalek P., “Regularities in the distribution of special sequences”, J. Number Theory, 18:1 (1984), 41–55 | MR | Zbl
[6] Larcher, G., “Digital Point Sets: Analysis and Applications”, Springer Lecture Notes in Statistics, 138, 1998, 167–222 | MR | Zbl
[7] Levin M. B., “Adelic constructions of low discrepancy sequences”, Online J. Anal. Comb., 2010, no. 5, 27 pp. | MR
[8] Levin M. B., “On the lower bound of the discrepancy of $(t,s)$ sequences: II”, Online J. Anal. Comb., 2017, no. 5, 74 pp. | MR
[9] Levin M. B., On a bounded remainder set for a digital Kronecker sequence, arXiv: 1901.00042
[10] Levin M. B., On a bounded remainder set for $(t,s)$ sequences II, in preparation
[11] Niederreiter H., Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, SIAM, 1992 | MR | Zbl
[12] Niederreiter H., Yeo A. S., “Halton-type sequences from global function fields”, Sci. China Math., 56 (2013), 1467–1476 | MR | Zbl
[13] Salvador G. D. V., Topics in the Theory of Algebraic Function Fields. Mathematics: Theory $\$ Applications, Birkhauser Boston, Inc., Boston, MA, 2006 | MR
[14] Stichtenoth H., Algebraic Function Fields and Codes, 2nd ed., Springer, Berlin, 2009 | MR | Zbl
[15] Tezuka S., “Polynomial arithmetic analogue of Halton sequences”, ACM Trans Modeling Computer Simulation, 3 (1993), 99–107 | Zbl