On a bounded remainder set for $(t,s)$ sequences~I
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 224-247
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf{x}_0,\mathbf{x}_1,\dots$ be a sequence of points in $[0,1)^s$.
A subset $S$ of $[0,1)^s$ is called a bounded remainder set if there exist two real numbers $a$ and $C$ such that, for every integer $N$,
$$
| \mathrm{card}\{n \; | \; \mathbf{x}_{n} \in S\} - a N| .
$$ Let $ (\mathbf{x}_n)_{n \geq 0} $ be an $s-$dimensional Halton-type sequence obtained from a global function field, $b \geq 2$,
$\mathbf{\gamma} =(\gamma_1,...,\gamma_s)$,
$\gamma_i \in [0, 1)$, with $b$-adic expansion $\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$, $i=1,...,s$.
In this paper, we prove that $[0,\gamma_1) \times ...\times [0,\gamma_s)$ is the bounded remainder set with respect to the
sequence $(\mathbf{x}_n)_{n \geq 0}$ if and only if
\begin{equation} \nonumber
\max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} \infty.
\end{equation}
We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.
Keywords:
bounded remainder set, $(t,s)$ sequence, Halton type sequences.
@article{CHEB_2019_20_1_a13,
author = {Mordechay B. Levin},
title = {On a bounded remainder set for $(t,s)$ {sequences~I}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {224--247},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a13/}
}
Mordechay B. Levin. On a bounded remainder set for $(t,s)$ sequences~I. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 224-247. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a13/