Multiplications on mixed abelian groups
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 214-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiplication on an abelian group $G$ is a homomorphism $\mu: G\otimes G\rightarrow G$. An mixed abelian group $G$ is called an $MT$-group if every multiplication on the torsion part of the group $G$ can be extended uniquely to a multiplication on $G$. $MT$-groups have been studied in many articles on the theory of additive groups of rings, but their complete description has not yet been obtained. In this paper, a pure fully invariant subgroup $G^*_\Lambda$ is considered for an abelian $MT$-group $G$. One of the main properties of this subgroup is that $\bigcap\limits_{p \in \Lambda (G)}pG^*_\Lambda$ is a nil-ideal in every ring with the additive group $G$ (here $\Lambda (G)$ is the set of all primes $p$, for which the $p$-primary component of $G$ is non-zero). It is shown that for every $MT$-group $G$ either $G=G^*_\Lambda$ or the quotient group $G/G^*_\Lambda$ is uncountable.
Keywords: abelian group, multiplication on a group, ring on an abelian group.
@article{CHEB_2019_20_1_a12,
     author = {E. I. Kompantseva},
     title = {Multiplications on mixed abelian groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {214--223},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a12/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Multiplications on mixed abelian groups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 214
EP  - 223
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a12/
LA  - ru
ID  - CHEB_2019_20_1_a12
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Multiplications on mixed abelian groups
%J Čebyševskij sbornik
%D 2019
%P 214-223
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a12/
%G ru
%F CHEB_2019_20_1_a12
E. I. Kompantseva. Multiplications on mixed abelian groups. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 214-223. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a12/

[1] Fuchs L., Abelian groups, Springer International Publishing, Switz., 2015 | MR | Zbl

[2] Topics in abelian groups, Chicago, Ill, 1963 | MR

[3] Moskalenko A. I., “Splitting length of an Abelian group”, Mat. Zametki, 24:6 (1978), 749–762 | MR | Zbl

[4] Moskalenko A. I., “Extension of multiplications on a mixed Abelian group of countable rank”, Mat. Zametki, 29:3 (1981), 375–379 | MR | Zbl

[5] Pham T. T. T., “Absolute ideals of mixed abelian groups”, Chebyshevskii Sb., 13:1 (2012), 153–164 | MR

[6] Fried E., “On the subgroups of abelian groups that are ideals in every ring”, Proc. Colloq. Abelian groups (Budapest, 1964), 51–55 | MR | Zbl

[7] Fried E., “Preideals in modules”, Period. Math. Hung., 1:3 (1971), 163–169 | MR | Zbl

[8] K. R. McLean, “The additive ideals of a $p$-ring”, J. London Math. Soc., 2 (1975), 523–529 | MR

[9] K. R. McLean, “$p$-ring whose only right ideals are the fully invariant subgroups”, Proc. London Math. Soc., 3 (1975), 445–458 | MR | Zbl

[10] B. J. Gardner, “Rings on completely decomposable torsion-free abelian groups”, Comment. Math. Univ. Carolinae, 15:3 (1974), 381–392 | MR | Zbl

[11] D. R. Jackett, “Rings on certain mixed abelian groups”, Pacific. J. Math., 98:2 (1982), 365–373 | MR | Zbl

[12] E. I. Kompantseva, “Absolute nil-ideals of abelian groups”, J. Math. Sci., 197:5 (2014), 625–634 | MR | Zbl

[13] Jacobson N., Structure of rings, Colloq. Publ., 37, Amer. Math. Soc., 1968 | MR

[14] E. H. Toubassi, D. A. Lawver, “Height-slope and splitting length of abelian groups”, Publs. Math., 20 (1973), 63–71 | MR | Zbl

[15] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl

[16] Kompantseva E. I., “Abelian $MT$-groups and rings on them”, Abstract of International Algebraic Conference dedicated to the $110^{th}$ anniversary of Professor A. G. Kurosh, Pub. MSU, M., 2018, 108–109