Algebraically compact abelian $TI$-groups
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 204-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

An abelian group $G$ is called a $TI$-group if every associative ring with additive group $G$ is filial. An abelian group $G$ such that every (associative) ring with additive group $G$ is an $SI$-ring (a hamiltonian ring) is called an $SI$-group (an $SI_H$-group). In this paper, $TI$-groups, as well as $SI$-groups and $SI_H$-groups are described in the class of reduced algebraically compact abelian groups.
Keywords: abelian group, ring on a group, algebraically compact group, filial ring, $TI$-group.
@article{CHEB_2019_20_1_a11,
     author = {E. I. Kompantseva and T. K. T. Nguyen},
     title = {Algebraically compact abelian $TI$-groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - T. K. T. Nguyen
TI  - Algebraically compact abelian $TI$-groups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 204
EP  - 213
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/
LA  - ru
ID  - CHEB_2019_20_1_a11
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A T. K. T. Nguyen
%T Algebraically compact abelian $TI$-groups
%J Čebyševskij sbornik
%D 2019
%P 204-213
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/
%G ru
%F CHEB_2019_20_1_a11
E. I. Kompantseva; T. K. T. Nguyen. Algebraically compact abelian $TI$-groups. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 204-213. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/

[1] R. A. Beaumont, “Rings with additive groups which is the direct sum of cyclic groups”, Duke Math. J., 15:2 (1948), 367–369 | MR | Zbl

[2] L. Fuchs, “Ringe und ihre additive Gruppe”, Publ. Math. Debrecen, 4 (1956), 488–508 | MR | Zbl

[3] T. Szele, “Zur Theorie der Zeroringe”, Math. Ann., 121 (1949), 242–246 | MR | Zbl

[4] L. Redei, T. Szele, “Die Ringe “erstaen Ranges””, Acta Sci. Math. (Szeged), 12a (1950), 18–29 | MR | Zbl

[5] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[6] Chekhlov A. R., “On abelian groups, in which all subgroups are ideals”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 3 (7), 64–67

[7] A. M. Aghdam, F. Karimi, A. Najafizadeh, “On the subgroups of torsion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., 31 (2013), 63–76 | MR | Zbl

[8] R. Andruszkiewicz, M. Woronowicz, “On additive groups of associative and commutative rings”, J. Quaest. Math., 40:4 (2017), 527–537 | MR | Zbl

[9] L. Fuchs, Abelian groups, Springer International Publishing, Switz., 2015 | MR | Zbl

[10] S. Feigelstock, Additive Groups of Rings, v. I, Pitman Advanced Publishing Program, Boston-London, 1983 ; v. II, 1988 | MR | Zbl

[11] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl

[12] E. I. Kompantseva, “Absolute nil-ideals of Abelian groups”, J. Math. Sci., 197:5 (2014), 625–634 | MR | Zbl

[13] S. Feigelstock, “Additive groups of rings whose subrings are ideals”, Bull. Austral. Math. Soc., 55 (1997), 477–481 | MR | Zbl

[14] L. Redei, “Vollidealringe im weiteren Sinn. I”, Acta Math. Acad. Sci. Hungar., 3 (1952), 243–268 | MR | Zbl

[15] Andriyanov V. I., “Periodic Hamiltonian rings”, Math. USSR-Sb., 3:2 (1967), 225–242 | MR

[16] R. L. Kruse, “Rings in which all subrings are ideals”, Canad. J. Math., 20 (1968), 862–871 | MR | Zbl

[17] G. Ehrlich, “Filial rings”, Portugal. Math., 42 (1983–1984), 185–194 | MR

[18] A. D. Sands, “On ideals in over-rings”, Publ. Math. Debrecen, 35 (1988), 273–279 | MR | Zbl

[19] R. Andruszkiewicz, E. Puczylowski, “On filial rings”, Portugal. Math., 45:2 (1988), 139–149 | MR | Zbl

[20] M. Filipowicz, E. R. Puczylowski, “Left filial rings”, Algebra Colloq., 11 (2004), 335–344 | MR | Zbl

[21] R. Andruszkiewicz, M. Woronowicz, “On $TI$-groups”, Recent Results in Pure and Applied Math. Podlasie, 2014, 33–41 | MR

[22] S. Feigelstock, “Additive groups of commutative rings”, Quaest. Math., 23 (2000), 241–245 ; (1953), 85–167 | MR | Zbl

[23] L. Ya. Kulikov, “Generalized primary groups. I; II”, Tr. Mosk. Mat. Obs., 1952, 247–326 ; 1953, 85–167 | MR | Zbl