Algebraically compact abelian $TI$-groups
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 204-213

Voir la notice de l'article provenant de la source Math-Net.Ru

An abelian group $G$ is called a $TI$-group if every associative ring with additive group $G$ is filial. An abelian group $G$ such that every (associative) ring with additive group $G$ is an $SI$-ring (a hamiltonian ring) is called an $SI$-group (an $SI_H$-group). In this paper, $TI$-groups, as well as $SI$-groups and $SI_H$-groups are described in the class of reduced algebraically compact abelian groups.
Keywords: abelian group, ring on a group, algebraically compact group, filial ring, $TI$-group.
@article{CHEB_2019_20_1_a11,
     author = {E. I. Kompantseva and T. K. T. Nguyen},
     title = {Algebraically compact abelian $TI$-groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - T. K. T. Nguyen
TI  - Algebraically compact abelian $TI$-groups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 204
EP  - 213
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/
LA  - ru
ID  - CHEB_2019_20_1_a11
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A T. K. T. Nguyen
%T Algebraically compact abelian $TI$-groups
%J Čebyševskij sbornik
%D 2019
%P 204-213
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/
%G ru
%F CHEB_2019_20_1_a11
E. I. Kompantseva; T. K. T. Nguyen. Algebraically compact abelian $TI$-groups. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 204-213. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/