Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a11, author = {E. I. Kompantseva and T. K. T. Nguyen}, title = {Algebraically compact abelian $TI$-groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {204--213}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/} }
E. I. Kompantseva; T. K. T. Nguyen. Algebraically compact abelian $TI$-groups. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 204-213. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a11/
[1] R. A. Beaumont, “Rings with additive groups which is the direct sum of cyclic groups”, Duke Math. J., 15:2 (1948), 367–369 | MR | Zbl
[2] L. Fuchs, “Ringe und ihre additive Gruppe”, Publ. Math. Debrecen, 4 (1956), 488–508 | MR | Zbl
[3] T. Szele, “Zur Theorie der Zeroringe”, Math. Ann., 121 (1949), 242–246 | MR | Zbl
[4] L. Redei, T. Szele, “Die Ringe “erstaen Ranges””, Acta Sci. Math. (Szeged), 12a (1950), 18–29 | MR | Zbl
[5] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl
[6] Chekhlov A. R., “On abelian groups, in which all subgroups are ideals”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 3 (7), 64–67
[7] A. M. Aghdam, F. Karimi, A. Najafizadeh, “On the subgroups of torsion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., 31 (2013), 63–76 | MR | Zbl
[8] R. Andruszkiewicz, M. Woronowicz, “On additive groups of associative and commutative rings”, J. Quaest. Math., 40:4 (2017), 527–537 | MR | Zbl
[9] L. Fuchs, Abelian groups, Springer International Publishing, Switz., 2015 | MR | Zbl
[10] S. Feigelstock, Additive Groups of Rings, v. I, Pitman Advanced Publishing Program, Boston-London, 1983 ; v. II, 1988 | MR | Zbl
[11] E. I. Kompantseva, “Torsion-free rings”, J. Math. Sci., 171:2 (2010), 213–247 | MR | Zbl
[12] E. I. Kompantseva, “Absolute nil-ideals of Abelian groups”, J. Math. Sci., 197:5 (2014), 625–634 | MR | Zbl
[13] S. Feigelstock, “Additive groups of rings whose subrings are ideals”, Bull. Austral. Math. Soc., 55 (1997), 477–481 | MR | Zbl
[14] L. Redei, “Vollidealringe im weiteren Sinn. I”, Acta Math. Acad. Sci. Hungar., 3 (1952), 243–268 | MR | Zbl
[15] Andriyanov V. I., “Periodic Hamiltonian rings”, Math. USSR-Sb., 3:2 (1967), 225–242 | MR
[16] R. L. Kruse, “Rings in which all subrings are ideals”, Canad. J. Math., 20 (1968), 862–871 | MR | Zbl
[17] G. Ehrlich, “Filial rings”, Portugal. Math., 42 (1983–1984), 185–194 | MR
[18] A. D. Sands, “On ideals in over-rings”, Publ. Math. Debrecen, 35 (1988), 273–279 | MR | Zbl
[19] R. Andruszkiewicz, E. Puczylowski, “On filial rings”, Portugal. Math., 45:2 (1988), 139–149 | MR | Zbl
[20] M. Filipowicz, E. R. Puczylowski, “Left filial rings”, Algebra Colloq., 11 (2004), 335–344 | MR | Zbl
[21] R. Andruszkiewicz, M. Woronowicz, “On $TI$-groups”, Recent Results in Pure and Applied Math. Podlasie, 2014, 33–41 | MR
[22] S. Feigelstock, “Additive groups of commutative rings”, Quaest. Math., 23 (2000), 241–245 ; (1953), 85–167 | MR | Zbl
[23] L. Ya. Kulikov, “Generalized primary groups. I; II”, Tr. Mosk. Mat. Obs., 1952, 247–326 ; 1953, 85–167 | MR | Zbl