On Newman polynomials without roots on the unit circle
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 197-203

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we give a necessary and sufficient condition on the triplet of nonnegative integers $a$ for which the Newman polynomial $\sum_{j=0}^a x^j + \sum_{j=b}^c x^j$ has a root on the unit circle. From this condition we derive that for each $d \geq 3$ there is a positive integer $n>d$ such that the Newman polynomial $1+x+\dots+x^{d-2}+x^n$ of length $d$ has no roots on the unit circle.
Keywords: Newman polynomial, root of unity.
@article{CHEB_2019_20_1_a10,
     author = {A. Dubickas},
     title = {On {Newman} polynomials without roots on the unit circle},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/}
}
TY  - JOUR
AU  - A. Dubickas
TI  - On Newman polynomials without roots on the unit circle
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 197
EP  - 203
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/
LA  - en
ID  - CHEB_2019_20_1_a10
ER  - 
%0 Journal Article
%A A. Dubickas
%T On Newman polynomials without roots on the unit circle
%J Čebyševskij sbornik
%D 2019
%P 197-203
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/
%G en
%F CHEB_2019_20_1_a10
A. Dubickas. On Newman polynomials without roots on the unit circle. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 197-203. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/