Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a10, author = {A. Dubickas}, title = {On {Newman} polynomials without roots on the unit circle}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {197--203}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/} }
A. Dubickas. On Newman polynomials without roots on the unit circle. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 197-203. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/
[1] D. W. Boyd, “Large Newman polynomials”, Diophantine analysis (Kensigton, 1985), London Math. Soc. Lecture Note Ser., 109, Cambridge Univ. Press, Cambridge, 1986, 159–170 | MR
[2] D. M. Campbell, H. R. P. Ferguson, R. W. Forcade, “Newman polynomials on $|z|=1$”, Indiana Univ. Math. J., 32 (1983), 517–525 | MR | Zbl
[3] A. Dubickas, “Nonreciprocal algebraic numbers of small measure”, Comment. Math. Univ. Carolin., 45 (2004), 693–697 | MR | Zbl
[4] B. Goddard, “Finite exponential series and Newman polynomials”, Proc. Amer. Math. Soc., 116 (1992), 313–320 | MR | Zbl
[5] M. Filaseta, C. Finch, C. Nicol, “On three questions concerning $0,1$-polynomials”, J. Théorie des Nombres Bordx, 118 (2006), 357–370 | MR
[6] C. Finch, L. Jones, “On the irreducibility of $\{-1,0,1\}$-quadrinomials”, Integers, 6:A16 (2006), 4 pp. | MR | Zbl
[7] Mercer I., “Newman polynomials, reducibility and roots on the unit circle”, Integers, 12:A6 (2012), 16 pp. | MR
[8] Mercer I., “Newman polynomials not vanishing on the unit circle”, Integers, 12:A67 (2012), 7 pp. | MR
[9] S. V. Konyagin, “On the number of irreducible polynomials with $0,1$ coefficients”, Acta Arith., 88 (1999), 333–350 | MR | Zbl
[10] J. J. Luo, H. J. Ruan, Y. L. Wang, “Lipschitz equivalence of Cantor sets and irreducibility of polynomials”, Mathematika, 64 (2018), 730–741 | MR | Zbl
[11] C. J. Smyth, “Some results on Newman polynomials”, Indiana Univ. Math. J., 34 (1985), 195–200 | MR | Zbl