On Newman polynomials without roots on the unit circle
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 197-203
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we give a necessary and sufficient condition on the triplet of nonnegative integers $a$ for which the Newman polynomial
$\sum_{j=0}^a x^j + \sum_{j=b}^c x^j$ has a root on the unit circle.
From this condition we derive that for each $d \geq 3$ there is a positive integer $n>d$ such that the Newman
polynomial
$1+x+\dots+x^{d-2}+x^n$ of length $d$
has no roots on the unit circle.
Keywords:
Newman polynomial, root of unity.
@article{CHEB_2019_20_1_a10,
author = {A. Dubickas},
title = {On {Newman} polynomials without roots on the unit circle},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {197--203},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/}
}
A. Dubickas. On Newman polynomials without roots on the unit circle. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 197-203. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a10/