Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a1, author = {A. Bal\v{c}i\={u}nas and R. Macaitien\.{e} and D. \v{S}iau\v{c}i\={u}nas}, title = {Joint discrete universality for $L$-functions from the {Selberg} class and periodic {Hurwitz} zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {46--65}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/} }
TY - JOUR AU - A. Balčiūnas AU - R. Macaitienė AU - D. Šiaučiūnas TI - Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions JO - Čebyševskij sbornik PY - 2019 SP - 46 EP - 65 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/ LA - en ID - CHEB_2019_20_1_a1 ER -
%0 Journal Article %A A. Balčiūnas %A R. Macaitienė %A D. Šiaučiūnas %T Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions %J Čebyševskij sbornik %D 2019 %P 46-65 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/ %G en %F CHEB_2019_20_1_a1
A. Balčiūnas; R. Macaitienė; D. Šiaučiūnas. Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 46-65. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/