Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_1_a1, author = {A. Bal\v{c}i\={u}nas and R. Macaitien\.{e} and D. \v{S}iau\v{c}i\={u}nas}, title = {Joint discrete universality for $L$-functions from the {Selberg} class and periodic {Hurwitz} zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {46--65}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/} }
TY - JOUR AU - A. Balčiūnas AU - R. Macaitienė AU - D. Šiaučiūnas TI - Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions JO - Čebyševskij sbornik PY - 2019 SP - 46 EP - 65 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/ LA - en ID - CHEB_2019_20_1_a1 ER -
%0 Journal Article %A A. Balčiūnas %A R. Macaitienė %A D. Šiaučiūnas %T Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions %J Čebyševskij sbornik %D 2019 %P 46-65 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/ %G en %F CHEB_2019_20_1_a1
A. Balčiūnas; R. Macaitienė; D. Šiaučiūnas. Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 46-65. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a1/
[1] Bagchi B., The statistical behavior and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[3] Buivydas E., Laurinčikas A., “A discrete version of the Mishou theorem”, Ramanujan J., 38:2 (2015), 331–347 | MR | Zbl
[4] Buivydas E., Laurinčikas A., “A generalized joint discrete universality theorem for the Riemann and Hurwitz zeta-function”, Lith. Math. J., 55:2 (2015), 193–206 | MR | Zbl
[5] J. B. Conway, Functions of one complex variable, Springer, Berlin–Heidelberg–New York, 1978 | MR
[6] Janulis K., Mixed joint universality for Dirichlet $L$-functions and Hurwitz type zeta-functions, Doctoral dissertation, Vilnius University, Vilnius, 2015
[7] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Stud. Sci. Math. Hung., 48 (2011), 257–279 | MR
[8] Kačinskaitė R., Matsumoto K., “The mixed joint universality for a class of zeta-functions”, Math. Nachr., 288:16 (2015), 1900–1909 | MR
[9] Kačinskaitė R., Matsumoto K., “Remarks on the mixed joint universality for a class of zeta-functions”, Bull. Austral. Math. Soc., 95:2 (2017), 187–198 | MR
[10] Kačinskaitė R., Matsumoto K., “On mixed joint discrete universality for a class of zeta-functions”, Anal. and Probab. Methods in Number Theory, eds. A. Dubickas et al., Vilnius University, Vilnius, 2017, 51–66 | MR
[11] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 | MR | MR
[12] Laurinčikas A., “The joint universality for periodic Hurwitz zeta-functions”, Analysis (Munich), 26:3 (2006), 419–428 | MR | Zbl
[13] Laurinčikas A., “Joint universality of zeta-functions with periodic coefficients”, Izv. Math., 74:3 (2010), 515–539 | MR | Zbl
[14] Laurinčikas A., “The joint discrete universality of periodic zeta-functions”, From Arithmetic to Zeta-Functions, Springer, 2016, 231–246 | Zbl
[15] Laurinčikas A., “Joint discrete universality for periodic zeta-functions”, Quaest. Math. | DOI
[16] Laurinčikas A., Macaitienė R., Proc. Steklov Inst. Math., 299:1 (2017), Discrete universality in the Selberg class
[17] Macaitienė R., “Joint universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions”, Ukrain. Math. J., 70:5 (2018), 655–671 | MR | Zbl
[18] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Usp. Matem. Nauk, 7:2 (1952,), 31–122 (in Russian) | MR | Zbl
[19] Mishou H., “The joint value-distribution of the Riemann zeta-function and Hurwitz zeta-function”, Lith. Math. J., 47 (2007), 32–47 | MR | Zbl
[20] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin, 1971 | MR | Zbl
[21] H. Nagoshi, J. Steuding, “Universality for $L$-functions in the Selberg class”, Lith. Math. J., 50 (2010), 293–311 | MR | Zbl
[22] Račkauskienė S., Joint universality of zeta-functions with periodic coefficients, Doctoral dissertation, Vilnius University, Vilnius, 2012
[23] Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math., 34 (1980), 440–451 | MR | Zbl
[24] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proc. of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), eds. E. Bombieri, Univ. Salerno, Salerno, 1992, 367–395 | MR
[25] J. Steuding, “On the universality for functions in the Selberg class”, Proc. of the Session in Analytic Number Theory and Diophantine Equations (Bonn, 2002), Bonner Math. Sciften., 360, eds. D. R. Heath-Brown, B. Z. Moroz, Bonn, 2003, 22 pp. | MR | Zbl
[26] Steuding J., Value-Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[27] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | MR | Zbl
[28] Voronin S. M., “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 | Zbl
[29] Voronin S. M., Analytic properties of generating functions of arithmetical objects, Diss. Doctor Phys. matem. nauk, Matem. Institute V. A. Steklov, M., 1977