Numerical modeling of the polar ionosphere parameters
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

An overview of the three numerical models for calculating the electrodynamic parameters of the Earth's high-latitude ionosphere is presented. The model of the global distribution of the ionospheric electric potential, constructed on the basis of the solution of the boundary value problem on the spreading of ionospheric currents, makes it possible to calculate the trajectories of convection of the ionospheric plasma in the northern and southern hemispheres. The model of the high-latitude ionosphere allows calculating the three-dimensional structure of the electron density in the altitude range of 120–500 km under various helio-geophysical conditions. Importance of the electric fields of magnetospheric origin is stressed. Concentration of the main ionospheric ions is determined by the solution of the photochemical balance equation and the convective-diffusion equation along the trajectory of the plasma tube convection, taking into account the parameters of the thermosphere. A methodology and algorithms for calculating the distribution of magnetic field over the ionosphere, which is created by electric currents of magnetospheric origin, are developed. The model is based on the solution of the equation for the vector magnetic potential and makes it possible to calculate a two-dimensional picture of the magnetic variations.
@article{CHEB_2018_19_4_a5,
     author = {R. Yu. Lukyanova},
     title = {Numerical modeling of the polar ionosphere parameters},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a5/}
}
TY  - JOUR
AU  - R. Yu. Lukyanova
TI  - Numerical modeling of the polar ionosphere parameters
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 91
EP  - 102
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a5/
LA  - ru
ID  - CHEB_2018_19_4_a5
ER  - 
%0 Journal Article
%A R. Yu. Lukyanova
%T Numerical modeling of the polar ionosphere parameters
%J Čebyševskij sbornik
%D 2018
%P 91-102
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a5/
%G ru
%F CHEB_2018_19_4_a5
R. Yu. Lukyanova. Numerical modeling of the polar ionosphere parameters. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 91-102. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a5/

[1] J. P. Heppner, N. C. Maynard, “Empirical high-latitude electric field model”, J. Geophys. Res., A2:5 (1987), 4467–4489

[2] V. O. Papitashvili, F. Christiansen, T. Neubert, “A new model of field-aligned currents derived from high-precision satellite magnetic field data”, Geophys. Res. Lett., 29:14 (2002), 1683 | DOI

[3] J. M. Ruohoniemi, R. A. Greenwald, “Dependencies of high-latitude plasma convection: consideration of IMF, seasonal, and UT factors in statistical patterns”, J. Geophys. Res., 110 (2005), A09204 | DOI

[4] D. Bilitza, L. A. Reinisch B. W. McKinnell, T. Fuller-Rowell, “The international reference ionosphere today and in the future”, J. Geodesy, 85 (2010), 909–920 | DOI

[5] R. Lukianova, O. A. Troshichev, Y. I. Galperin, N. V. Jorjio, “Reconstruction of the FAC structure along spacecraft trajectory with regard for edge effects of current sheets”, Int. J.Geomag. Aeronomy, 2:3 (2001), 159–172

[6] R. Yu. Lukianova, “Distribution of the electric potential in the Earth's ionosphere taking into account the electrodynamic coupling of the hemispheres: numerical moel”, Math. Modeling, 29:5 (2017), 122–132

[7] B. E. Brunelli, A. A. Namgaladze, Physics of the ionosphere, Nauka, L., 1988, 526 pp.

[8] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1981, 512 pp. | MR

[9] A. A. Samarsky, E. S. Nikolaev, Methods of solution of network equations, Nauka, M., 1978, 592 pp.

[10] R. Lukianova, F. Christiansen, “Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents”, J. Geophys. Res., 111 (2006), A03213 | DOI

[11] R. Lukianova, C. Hanuise, F. Christiansen, “Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model”, J. Atmos. Solar-Terr. Phys., 70 (2008), 2324–2335 | DOI

[12] V. M. Uvarov, R. Yu. Lukianova, “Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions”, Adv. Space Research, 56 (2015), 2563–2574 | DOI

[13] R. Lukianova, V. M. Uvarov, P. Coisson, “Evolution of the high-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions”, Adv. Space Res., 59:2 (2017), 557–570 | DOI

[14] V. M. Uvarov, P. D. Barashkov, “"Types of electric field distribution and corresponding types of convection in the polar ionosphere. A model”, Geomagnetizm i aeronomy, 29:4 (1989), 621–628

[15] A. E. Hedin, “MSIS-86 Thermospheric Model”, J. Geophys. Res., 92:5 (1987), 4649–4662