Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_4_a13, author = {V. N. Chubarikov and H. M. Saliba}, title = {Mean-value theorem for non-complete rational trigonometric sums}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {252--258}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a13/} }
V. N. Chubarikov; H. M. Saliba. Mean-value theorem for non-complete rational trigonometric sums. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 252-258. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a13/
[1] I. M. Vinogradov, Metod trigonometricheskih summ v teorii chisel, Nauka, M., 1980 | MR
[2] L. K. Hua, Selected Papers, Springer Verlag, New York Inc, 1983, 888 pp. | MR | Zbl
[3] G. I. Arhipov, Izbrannye trudy, Izd-vo Orlovskogo gos. un-ta, Orel, 2013, 464 pp.
[4] G. I. Arhipov, A. A. Karacuba, V. N. Chubarikov, Teoriya kratnyh trigonometricheskih summ, Nauka, M., 1987 | MR
[5] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis, de Gruyter Expositions in Mathematics, 39, Walter de Gruyter, Berlin–New York, 2004 | MR | Zbl
[6] V. N. Chubarikov, “Ob asimptoticheskih formulah dlya intngrala I. M. Vinogradova i ego obobshchenij”, Tr. MIAN, 157, 1981, 214–232 | Zbl
[7] V. N. Chubarikov, “Kratnye polnye racional'nye arifmeticheskie summy ot znachenij mnogochlena”, Dokl. RAN, 478:1 (2018), 22–24 | Zbl
[8] L. G. Arhipova, V. N. Chubarikov, “Pokazatel' skhodimosti osobogo ryada odnoj mnogomernoj problemy”, Vestn. Mosk. un-ta. Ser. I, Matematika, mekhanika, 2018, no. 5, 59–62
[9] H. M. Saliba, “On non-complete rational trigonometric sums”, Chebyshevskii sbornik, 19:3 (2018) | MR
[10] V. N. Chubarikov, “Ob odnoj teoreme o srednem”, Vestn. Mosk. un-ta. Ser. I, Matematika, mekhanika, 2019, no. 1, 59–62