Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_4_a11, author = {P. N. Shebalin}, title = {Mathematical methods of analysis and forecast of earthquake aftershocks: the need to change the paradigm}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {227--242}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a11/} }
TY - JOUR AU - P. N. Shebalin TI - Mathematical methods of analysis and forecast of earthquake aftershocks: the need to change the paradigm JO - Čebyševskij sbornik PY - 2018 SP - 227 EP - 242 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a11/ LA - ru ID - CHEB_2018_19_4_a11 ER -
P. N. Shebalin. Mathematical methods of analysis and forecast of earthquake aftershocks: the need to change the paradigm. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 227-242. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a11/
[1] M. Baiesi, M. Paczuski, “Scale–free networks of earthquakes and aftershocks”, Phys. Rev. E, 69 (2004)
[2] S. Baranov, V. Pavlenko, P. Shebalin, “Forecasting aftershock activity: 4. Estimating maximum magnitude of subsequent aftershocks”, Izvestiya, Physics of the Solid Earth, 55:1 (2019) | Zbl
[3] S. Baranov, P. Shebalin, “Forecasting aftershock activity: 3. Båth dynamic law”, Izvestiya, Physics of the Solid Earth, 54:6 (2018), 926–932
[4] S. Baranov, P. Shebalin, “Global statistics of aftershocks of large earthquakes: independence of times and magnitudes”, Journal of Volcanology and Seismology, 12:6 (2018)
[5] M. Bath, “Lateral inhomogeneities in the upper mantle”, Tectonophysics, 2 (1965), 483–514
[6] Sh. R. Bogoutdinov, S. M. Agayan, A. D. Gvishiani, E. M. Graeva, M. V. Rodkin, J. Zlotnicki, J. L. LeMouel, “Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity”, Izvestiya Physics of the Solid Earth, 43:7 (2007), 597–609
[7] S. Davis, C. Frohlich, “Single-link cluster analysis of earthquakes aftershocks: decay laws and regional variations”, J. Geophys. Res., 96 (1991), 6335–1350
[8] J. Gardner, L. Knopoff, Is the sequence of earthquakes in Southern California with aftershocks removed Poissonian?, Bull. Seismol. Soc. Am., 5 (1974), 1363–1367
[9] E. Gordeev, S. Fedotov, V. Chebrov, “Detailed Seismological Investigations in Kamchatka during the 1961–2011 period: main results”, Journal of Volcanology and Seismology, 7:1 (2013), 1–15
[10] B. Gutenberg, C. Richter, Seismicity of the Earth, Princeton Univ. Press, 1954 | MR
[11] A. D. Gvishiani, S. Agayan, B. Dzeboev, I. Belov, “Algorithm barrier with single learning class for strong earthquake–prone areas recognition”, Geoinformatics Research Papers: Proceedings of Geophysical Center RAS, 5:1 (2017), 95
[12] A. Gvishiani, S. Agayan, S. Bogoutdinov, “Fuzzy recognition of anomalies in time series”, Doklady Earth Sciences, 421:1 (2008), 838–842
[13] A. D. Gvishiani, S. M. Agayan, Sh. R. Bogoutdinov, J. Zlotnicki, J. Bonnin, “Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series”, Cybernetics and Systems Analysis, 44:3 (2008), 309–323 | MR | Zbl
[14] A.D. Gvishiani, S.M. Agayan, B.A. Dzeboev, I.O. Belov, “Recognition of strong earthquake–prone areas with a single learning class”, Doklady Earth Sciences, 474:1 (2017), 546–551
[15] A. D. Gvishiani, M. N. Dobrovolsky, S. Agayan, B. Dzeboev, “Fuzzy–based clustering of epicenters and strong earthquake–prone areas”, Environmental Engineering and Management Journal, 12:1 (2013), 1–10
[16] A. Gvishiani, B. Dzeboev, S. Agayan, “A new approach to recognition of the strong earthquake–prone areas in the Caucasus”, Izvestiya. Physics of the Solid Earth, 49:6 (2013), 747–766
[17] A. Gvishiani, B. Dzeboev, S. Agayan, “Fcazm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts”, Izvestiya. Physics of the Solid Earth, 52:4 (2016), 461–491
[18] A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva et al., “Significant earthquake–prone areas in the Altai–Sayan region”, Izvestiya, Physics of the Solid Earth, 54:3 (2018), 406–414
[19] A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva, A.I. Rybkina, “Formalized clustering and significant earthquake-prone areas in the Crimean peninsula and Northwest Caucasus”, Izvestiya. Physics of the Solid Earth, 53:3 (2017), 353–365
[20] Y. Kagan, D. Jackson, “Long-term earthquake clustering”, Geophys. J. Intern., 104 (1991), 117–133
[21] R. G. Kulchinsky, E. P. Kharin, I. P. Shestopalov, A. D. Gvishiani, S. M. Agayan, Sh. R. Bogoutdinov, “Fuzzy logic methods for geomagnetic events detections and analysis”, Russian Journal of Earth Sciences, 11:4 (2010), 1–6
[22] D. Marsan, O. Lengline, “A new estimation of the decay of aftershock density with distance to the mainshock”, Journal of Geophysical Research: Solid Earth, 115:B9 (2010)
[23] G. Molchan, O. Dmitrieva, “Aftershock identification: methods and new approaches”, Geophys. J. Int., 109 (1992), 501–516
[24] Y. Ogata, “Statistical models for standard seismicity and detection of anomalies by residual analysis”, Tectonophysics, 169 (1989), 159–174
[25] Y. Ogata, “Seismicity analysis through point-process modeling; a review”, PAGEOPH, 155 (1999), 471–508
[26] F. Omori, “On the aftershocks of earthquake”, J. Coll. Sci. Imp. Univ. Tokyo, 7 (1894), 111–200
[27] P. Reasenberg, “Second-order moment of Central California seismicity, 1969–1982”, J. Geophys. Res., 90 (1985), 5479–5495
[28] P. Reasenberg, L. Jones, “Earthquake hazard after a mainshock in California”, Science, 242 (1989), 1173–1176
[29] W. Savage, “Microearthquake clustering near Fairview Peak, Nevada, and in the Nevada Seismic Zone”, J. Geophys. Res., 77:35 (1972), 7049–7056
[30] P. Shebalin, S. Baranov, B. Dzeboev, “The law of the repeatability of the number of aftershocks”, Doklady Earth Sciences, 481:1 (2018), 963–966 | MR
[31] V. Smirnov, “Prognostic anomalies of seismic regime: methodical basis of data preprocessing”, Geofisicheskiye Issledovaniya, 10:2 (2009), 7–22
[32] T. Utsu, “A statistical study on the occurrence of aftershocks”, Geophys. Mag., 30 (1961), 521–605
[33] I. Zaliapin, A. Gabrielov, V. Keilis-Borok, H. Wong, “Clustering analysis of seismicity and aftershock identification”, Phys. Rev. Lett., 101:1 (2008), 1–4
[34] I. Zaliapin, Y. Ben-Zion, “Earthquake clusters in Southern California I: Identification and stability”, Journal of Geophysical Research: Solid Earth, 118:6 (2013), 2847–2864
[35] I. Zaliapin, Y. Ben-Zion, “A global classification and characterization of earthquake clusters”, Geophysical Journal International, 207:1 (2016), 608–634
[36] J. Y. Zhuang, K. Ogata, D. Vere-Jones, “Stochastic declustering of space-time earthquake occurrences”, J. Am. Stat. Assoc., 97 (2002), 369–380 | MR | Zbl
[37] J. Zlotnicki, J.L. LeMouel, A. Gvishiani et al., “Automatic fuzzy–logic recognition of anomalous activity on long geophysical records: application to electric signals associated with the volcanic activity of La Fournaise volcano (Réunion island)”, Planetary Science Letters, 234:1–2, 261–278