Linniks Konstante ist kleiner als~$5$
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 80-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Seien $a$ und $q$ zwei teilerfremde, positive, ganze Zahlen. In 1944 bewies Y. Linnik, dass die kleinste Primzahl in einer arithmetischen Progression $mod$ $q$ kleiner als $C q^L$ ist mit positiven Konstanten $C$ und $L$. Aufbauend auf einer Arbeit von Heath-Brown beweisen wir, dass $L=5$ zulässig ist.
Keywords: Linniks konstante.
@article{CHEB_2018_19_3_a8,
     author = {T. Xylouris},
     title = {Linniks {Konstante} ist kleiner als~$5$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {80--94},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {de},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a8/}
}
TY  - JOUR
AU  - T. Xylouris
TI  - Linniks Konstante ist kleiner als~$5$
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 80
EP  - 94
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a8/
LA  - de
ID  - CHEB_2018_19_3_a8
ER  - 
%0 Journal Article
%A T. Xylouris
%T Linniks Konstante ist kleiner als~$5$
%J Čebyševskij sbornik
%D 2018
%P 80-94
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a8/
%G de
%F CHEB_2018_19_3_a8
T. Xylouris. Linniks Konstante ist kleiner als~$5$. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 80-94. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a8/

[1] Barban M.B., Vehov P.P., “On an extremal problem”, Trans. Moscow Math. Soc., 18 (1968), 91–99 (Russian) | MR | Zbl

[2] J. Chen, “On the least prime in an arithmetical progression”, Sci. Sinica, 14 (1965), 1868–1871 | MR | Zbl

[3] J. Chen, “On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions”, Sci. Sinica, 20:5 (1977), 529–562 | MR | Zbl

[4] J. Chen, “On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions II”, Sci. Sinica, 22:8 (1979), 859–889 | MR | Zbl

[5] J. Chen, J. M. Liu, “On the least prime in an arithmetical progression (III), (IV)”, Science in China Ser. A, 32:6 (1989), 654–673 ; 7, 792–807 | MR | Zbl

[6] J. Chen, J. M. Liu, “On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's L-functions (V)”, International Symposium in Memory of Hua Loo Keng (Beijing, 1988), v. I, Springer-Verlag, Berlin, 1942 | MR

[7] D. D. Goldston, C. Y. Y{\i}ld{\i}r{\i}m, Higher correlations of divisor sums related to primes III: k-Correlations, 10 Sep. 2002, arXiv: math/0209102v1 [math.NT] | MR | Zbl

[8] S. W. Graham, Applications of sieve methods, Ph.D. Thesis, University of Michigan, 1977 | MR | Zbl

[9] S. W. Graham, “An asymptotic estimate related to Selberg's sieve”, J. Number Theory, 10 (1978), 83–94 | MR | Zbl

[10] S. W. Graham, “On Linnik's constant”, Acta Arith., 39:2 (1981), 163–179 | MR | Zbl

[11] D. R. Heath-Brown, “Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression”, Proc. London Math. Soc. (3), 64:2 (1992), 265–338 | MR

[12] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS Colloquium Publications, 53, 2004 | MR | Zbl

[13] M. Jutila, “A new estimate for Linnik's constant”, Ann. Acad. Sci. Fenn. Ser. A I, 1970, no. 471, 8 pp. | MR

[14] M. Jutila, “On Linnik's constant”, Math. Scand., 41:1 (1977), 45–62 | MR | Zbl

[15] Yu. V. Linnik, “On the least prime in an arithmetic progression I. The basic theorem”, Rec. Math. (Mat. Sbornik) N.S., 15(57) (1944), 139–178 | MR | Zbl

[16] Yu. V. Linnik, “On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon”, Rec. Math. (Mat. Sbornik) N.S., 15(57) (1944), 347–368 | MR | Zbl

[17] M. C. Liu, T. Wang, “A numerical bound for small prime solutions of some ternary linear equations”, Acta Arith., 86:4 (1998), 343–383 | MR | Zbl

[18] C. D. Pan, “On the least prime in an arithmetical progression”, Sci. Record (N.S.), 1 (1957), 311–313 | MR | Zbl

[19] C. D. Pan, “On the least prime in an arithmetical progression”, Acta Sci. Natur. Univ. Pekinensis, 4 (1958), 1–34 | MR

[20] P. Turán, “On some recent results in the analytic theory of numbers”, Number Theory Institute (1969), Proceedings of Symposia in Pure Mathematics, 20, American Mathematical Society, Providence, R.I., 1971, 359–374 | MR

[21] W. Wang, “On the least prime in an arithmetic progression”, Acta Math. Sinica, 29:6 (1986), 826–836 | MR | Zbl

[22] W. Wang, “On the least prime in an arithmetic progression”, Acta Math. Sinica, 7:3 (1991), 279–289 | MR | Zbl

[23] T. Xylouris, “On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions”, Acta Arith., 150:1 (2011), 65–91 | MR | Zbl

[24] T. Xylouris, “Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression”, Bonner Mathematische Schriften, 404, Bonn, 2011, 1–110 | MR