Number theory and applications in cryptography
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 61-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes some elements of the number theory and shows how they are used in modern information security systems. As examples, the most famous protocols and algorithms such as the Diffie-Hellman Protocol for pair key generation, RSA and El Gamal public key encryption algorithms. The generalized Euclid algorithm is considered, as a one of the most common element of the number theory used in cryptography. Algorithms are given RSA and El Gamal signature algorithms are given. In conclusion, the algorithm of the electronic signature based on bilinear transformation uses a simplified case of the pairing in the explicit law of reciprocity.
Keywords: number theory, cryptography protocols, public key cryptographic algorithms, signature, bilinear transformation.
@article{CHEB_2018_19_3_a6,
     author = {S. V. Vostokov and R. P. Vostokova and S. V. Bezzateev},
     title = {Number theory and applications in cryptography},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {61--73},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - R. P. Vostokova
AU  - S. V. Bezzateev
TI  - Number theory and applications in cryptography
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 61
EP  - 73
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/
LA  - ru
ID  - CHEB_2018_19_3_a6
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A R. P. Vostokova
%A S. V. Bezzateev
%T Number theory and applications in cryptography
%J Čebyševskij sbornik
%D 2018
%P 61-73
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/
%G ru
%F CHEB_2018_19_3_a6
S. V. Vostokov; R. P. Vostokova; S. V. Bezzateev. Number theory and applications in cryptography. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 61-73. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/

[1] A. A. Buhshtab, Teoriya chisel, M., 1960

[2] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR, Ser mat., 42:6 (1978) | Zbl

[3] S. V. Vostokov, “Simvoly na formal'nyh gruppah”, Izv. AN SSSR, Ser. matem., 45:5 (1981), 985–1014 | MR | Zbl

[4] N. Koblic, Kurs teorii chisel i kriptografii, izd TVP, M., 2001, 254 pp.

[5] B. Shnajer \it Prikladnaya kriptografiya. Protokoly, algoritmy, iskhodnye teksty na yazyke Si, izd. Triumf, M., 2002, 816 pp.

[6] B. SHnajer, Sekrety i lozh'. Bezopasnost' dannyh v cifrovom mire, izd. Piter, 2003, 366 pp.

[7] D. Kan, Vzlomshchiki kodov, Centrpoligraf, 2000, 480 pp.

[8] W. Diffie, M. Hellman, “New directions in cryptography”, IEEE Trans. Inform. Theory, IT-22, 472–492 | MR

[9] R. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public key cryptosystems”, Commum. ACM, 21:2, Feb. (1978), 120–126 | MR | Zbl

[10] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”, IEEE Trans. Inform. Theory, 31:4 (1985), 469–472 | MR | Zbl

[11] C. C. Cocks, A Note on non-secret encryption, UK Communications Electronics Security Group, November 20, 1973

[12] J. H. Ellis, The possibility of secure non-secret digital encryption, CSEG Report 3006, January, 1970

[13] S. V. Vostokov, V. A. Lecko, “Kanonicheskoe razlozhenie v gruppe tochek formal'noj gruppy Lyubina-Tehjta”, Zap. nauchn. sem. LOMI, 103, 1980, 52–57 | Zbl

[14] S. V. Vostokov, “Simvol Gil'berta dlya formal'nyh grupp Lyubina-Tehjta I”, Zap. nauchn. sem. LOMI, 114, 1982, 77–95 | Zbl

[15] S. V. Vostokov, A. N. Kirillov, “Normennoe sparivanie v dvumernom lokal'nom pole”, Zap. nauchn. sem. LOMI, 132, 1983, 76–84 | MR | Zbl

[16] S. V. Vostokov, I. B. Fesenko, “Simvol Gil'berta dlya formal'nyh grupp Lyubina-Tehjta II”, Zap. nauchn. sem. LOMI, 132, 1983, 85–96 | MR

[17] S. V. Vostokov, “Yavnaya konstrukciya teorii polej klassov mnogomernogo lokal'nogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR

[18] D. G. Benous, S. V. Vostokov, “Sur les represetations p-adiques des corps locaux multidimensionnels attache's aux groups formels”, J. fuer die reine und angew. Math., 437 (1993), 131–166 | MR

[19] S. V. Vostokov, O. V. Demchenko, “Yavnaya formula sparivaniya Gil'berta dlya formal'nyh grupp Hondy”, Zap. nauchn. sem. POMI, 272, 2000, 86–128 | Zbl

[20] Falko Lorenz, Sergei Vostokov, “Honda groups and explicit pairing on the module of Cartier curves”, Algebraic Number Theory and Algebraic Geometry, Parshin Festschrift, Contemporary Methematics, 300, eds. S. Vostokov, Y. Zarhin, AMS, Providence, Rhode Island, 2002, 143–170 | MR | Zbl

[21] S. V. Vostokov, F. Lorenc, “Yavnaya formula simvola Gil'berta dlya grupp Hondy v mnogomernom lokal'nom pole”, Matem. sb., 194:2 (2003), 3–36 | MR | Zbl