Number theory and applications in cryptography
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 61-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes some elements of the number theory and shows how they are used in modern information security systems. As examples, the most famous protocols and algorithms such as the Diffie-Hellman Protocol for pair key generation, RSA and El Gamal public key encryption algorithms. The generalized Euclid algorithm is considered, as a one of the most common element of the number theory used in cryptography. Algorithms are given RSA and El Gamal signature algorithms are given. In conclusion, the algorithm of the electronic signature based on bilinear transformation uses a simplified case of the pairing in the explicit law of reciprocity.
Keywords: number theory, cryptography protocols, public key cryptographic algorithms, signature, bilinear transformation.
@article{CHEB_2018_19_3_a6,
     author = {S. V. Vostokov and R. P. Vostokova and S. V. Bezzateev},
     title = {Number theory and applications in cryptography},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {61--73},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - R. P. Vostokova
AU  - S. V. Bezzateev
TI  - Number theory and applications in cryptography
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 61
EP  - 73
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/
LA  - ru
ID  - CHEB_2018_19_3_a6
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A R. P. Vostokova
%A S. V. Bezzateev
%T Number theory and applications in cryptography
%J Čebyševskij sbornik
%D 2018
%P 61-73
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/
%G ru
%F CHEB_2018_19_3_a6
S. V. Vostokov; R. P. Vostokova; S. V. Bezzateev. Number theory and applications in cryptography. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 61-73. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a6/