The Riemann hypothesis as the parity of special binomial coefficients
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 46-60

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann Hypothesis has many equivalent reformulations. Some of them are arithmetical, that is, thewy are statements about properties of integers or natural numbers. Among them the reformulations with the simplest logical structure are those from the class $\Pi_1^0$ from the arithmetical hierachy, that is, having the form "for every $x_1,\dots,x_m$ relation $A(x_1,\dots,x_m)$ holds", where $A$ is decidable. As an example one can take the reformulation of the Riemann Hypothsis as the assertion that certain Diophantine equation has no solution (such particular equation can be given explicitly). While the logical structure of this reformulation is indeed very simple, all known methods for constructing such Diophantine equation produce equations occupying several pages. On the other hand, there are known other reformulation also belonging to class $\Pi_1^0$ but having rather short wording. As examples one can mention the criteria of the validity of the Riemann Hypothesis proposed by J.-L. Nicolas, by G. Robin, and by J. Lagarias. The shortcoming of these reformulations (as compared to Diophantine equations) consists in the usage of constants and funtions which are “more complicated” than integers and addition and multiplication sufficient for constructing Diophantine equations. The paper presents a system of $9$ conditions imposed on $9$ variables. In order to state these conditions one needs only addition, multiplication, exponentiation (unary, with fixed base $2$), congruences and remainders, inequalities, and binomial coefficient. The whole system can be written explicitly on a single sheet of paper. It is proved that the system is inconsistent if and only if the Riemann Hypothesis is true.
Keywords: the Riemann Hypothesis, binomial coefficients.
@article{CHEB_2018_19_3_a5,
     author = {Yu. V. Matiyasevich},
     title = {The {Riemann} hypothesis as the parity of special binomial coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - The Riemann hypothesis as the parity of special binomial coefficients
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 46
EP  - 60
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/
LA  - ru
ID  - CHEB_2018_19_3_a5
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T The Riemann hypothesis as the parity of special binomial coefficients
%J Čebyševskij sbornik
%D 2018
%P 46-60
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/
%G ru
%F CHEB_2018_19_3_a5
Yu. V. Matiyasevich. The Riemann hypothesis as the parity of special binomial coefficients. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 46-60. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/