Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a5, author = {Yu. V. Matiyasevich}, title = {The {Riemann} hypothesis as the parity of special binomial coefficients}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {46--60}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/} }
Yu. V. Matiyasevich. The Riemann hypothesis as the parity of special binomial coefficients. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 46-60. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a5/
[1] Broughan K., Equivalents of the Riemann hypothesis, v. 1, Arithmetic equivalents, Cambridge University Press, Cambridge, 2017 | MR
[2] Broughan K., Equivalents of the Riemann hypothesis, v. 2, Analytic equivalents, Cambridge University Press, Cambridge, 2017, xx+491 pp. | DOI | MR
[3] Gödel K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I”, Monatsh. Math. Phys., 1931 | DOI | MR
[4] Booker A.R., “Turing and the Riemann hypothesis”, Notices Am. Math. Soc., 53:10 (2006), 1208–1211 | MR | Zbl
[5] Booker A. R. Artin's conjecture, Turing's method, and the Riemann hypothesis, Exp. Math., 15:4 (2006), 385–407 | DOI | MR | Zbl
[6] S. B. Cooper, J. van Leeuwen (eds.), Alan Turing – His Work and Impact, Elsevier Science, 2013 | DOI | MR | Zbl
[7] Matiyasevich Yu. V., “Alan Turing and number theory”, Matematika v vysshem obrazovanii, 10 (2012), 111–134 (in Russian)
[8] Turing A. M., “On computable numbers, with an application to the Entscheidungsproblem”, Proc. London Math. Soc., 42:2 (1936), 230–265 | MR
[9] Kreisel G., “Mathematical significance of consistency proofs”, Journal of Symbolic Logic, 23:2 (1958), 155–182 | MR
[10] Yedidia A., Aaronson S., “A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory”, Complex Systems, 25 (2016) | DOI | MR
[11] Aaronson S., The blog, https://www.scottaaronson.com/blog/?p=2741 | MR
[12] Calude C. S., Calude E., Dinneen M. J., “A new measure of the difficulty of problems”, J. Mult.-Val. Log. Soft Comput., 12:3/4 (2006), 285–307 | MR | Zbl
[13] Calude E., “The complexity of Riemann's hypothesis”, J. Mult.-Val. Log. Soft Comput., 18:3/4 (2012), 257–265 | MR | Zbl
[14] Yu. V. Matiyasevich, The Riemann Hypothesis in Computer Science, Preprints of St. Petersburg Department of Steklov Mathematical Institute, No 7, 2018 | DOI
[15] Manin Yu. I., Panchishkin A. A., Introduction to modern number theory. Fundamental problems, ideas and theories, Transl. from the Russian, 2nd revised ed., Springer, Berlin, 2005 | MR | Zbl
[16] Matiyasevich Yu., Hilbert's Tenth Problem, Transl. from the Russian, MIT Press, Cambridge (Massachusetts)–London, 1993 | MR | MR | Zbl
[17] Davis M., Matijasevič Yu., Robinson J., “Hilbert's tenth problem: Diophantine equations: Positive aspects of a negative solution”, Proc. Symp. Pure Math., 28 (1976), 323–378 | MR | Zbl
[18] Hernandez Caceres J. M., The Riemann Hypothesis and Diophantine equations, Master's Thesis in Mathematics, Mathematical Institute, University of Bonn
[19] Moroz B. Z., The Riemann Hypothesis and Diophantine equatons, St. Petersburg Mathematical Society Preprints, No 3, 2018 (in Russian)
[20] Nayebi A., On the Riemann Hypothesis and Hilbert's Tenth Problem, Unpublished Manuscript, , 2012 http://web.stanford.edu/ãnayebi/projects/RH_Diophantine.pdf
[21] Matijasevič Yu. V., “On recursive unsolvability of Hilbert's tenth problem”, Studies in Logic and the Foundations of Mathematics, 74, 89–110 | MR
[22] Jones J. P., “Universal Diophantine equation”, J. Symb. Log., 47 (1982), 549–571 | DOI | MR | Zbl
[23] Schoenfeld L., “Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II”, Math. Comput., 30 (1976), 337–360 | DOI | MR | Zbl
[24] Nicolas J.-L., “Petites valeurs de la fonction d'Euler”, J. Number Theory, 17 (1983), 375–388 | DOI | MR | Zbl
[25] Robin G., “Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann”, J. Math. Pures Appl. (9), 63 (1984), 187–213 | MR | Zbl
[26] Lagarias J. C., “An elementary problem equivalent to the Riemann hypothesis”, Am. Math. Mon., 109:6 (2002), 534–543 | DOI | MR | Zbl
[27] Mann H. B., Shanks D., “A necessary and sufficient condition for primality, and its source”, J. Comb. Theory, Ser. A, 13 (1972), 131–134 | DOI | MR | Zbl
[28] Hsu L., Shiue P. J.-S., “On a combinatorial expression concerning Fermat's Last Theorem”, Adv. Appl. Math., 18:2 (1997), 216–219 | DOI | MR | Zbl
[29] Matiyasevich Yu.V., “A class of primality criteria formulated in terms of the divisibility of binomial coefficients”, Journal of Soviet Mathematics, 16:1 (1981), 874–885 | DOI | Zbl | Zbl
[30] Matiyasevich Yu., “Some arithmetical restatements of the four color conjecture”, Theor. Comput. Sci., 257:1/2 (2001), 167–183 | DOI | MR | Zbl
[31] Margenstern M., Matiyasevich Yu., “A binomial representation of the $3x + 1$ problem”, Acta Arith., 91:4 (1999), 367–378 | DOI | MR | Zbl
[32] Kummer E. E., “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, Journal für die Reine und Angewandte Mathematik, 44 (1852), 93–146 | MR | Zbl
[33] Singmaster D., “Notes on binomial coefficients. I: A generalization of Lucas' congruence”, J. Lond. Math. Soc., II. Ser., 8 (1974), 545–548 | DOI | MR | Zbl
[34] Lucas E., “Théorie des Fonctions Numériques Simplement Périodiques”, American Journal of Mathematics, 1 (1878), 184–240 http://www.jstor.org/stable/2369311 | MR | Zbl
[35] Schmidt E., “Über die Anzahl der Primzahlen unter gegebener Grenze”, Math Annalen, 57 (1903 (1932)), 195–203 | MR
[36] Ingham A. E., The distribution of prime numbers, reprinted in 1990, Cambridge Tracts in Mathematics and Mathematical Physics, 30, Cambridge University Press, London, 1932 | MR