On complete rational trigonometric sums and integrals
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 298-310

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotical formulae as $m\to\infty$ for the number of solutions of the congruence system of a form $$ g_s(x_1)+\dots +g_s(x_k)\equiv g_s(x_1)+\dots +g_s(x_k)\pmod{p^m}, 1\leq s\leq n, $$ are found, where unknowns $x_1,\dots ,x_k,y_1,\dots ,y_k$ can take on values from the complete system of residues modulo $p^m,$ but degrees of polynomials $g_1(x),\dots ,g_n(x)$ do not exceed $n.$ Such polynomials $g_1(x),\dots ,g_n(x),$ for which these asymptotics hold as $2k>0,5n(n+1)+1,$ but as $2k\leq 0,5n(n+1)+1$ the given asymptotics have no place, were shew.Besides, for polynomials $g_1(x),\dots ,g_n(x)$ with real coefficients, moreover degrees of polynomials do not exceed $n,$ the asymptotic of a mean value of trigonometrical integrals of the form $$ \int\limits_0^1e^{2\pi if(x)}, f(x)=\alpha_1g_1(x)+\dots +\alpha_ng_n(x), $$ where the averaging is lead on all real parameters $\alpha_1,\dots ,\alpha_n,$ is found. This asymptotic holds for the power of the averaging $2k>0,5n(n+1)+1,$ but as $2k\leq 0,5n(n+1)+1$ it has no place.
Keywords: complete rational trigonometric sums, trigonometric integrals.
@article{CHEB_2018_19_3_a23,
     author = {V. N. Chubarikov},
     title = {On complete rational trigonometric sums and integrals},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {298--310},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a23/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - On complete rational trigonometric sums and integrals
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 298
EP  - 310
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a23/
LA  - ru
ID  - CHEB_2018_19_3_a23
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T On complete rational trigonometric sums and integrals
%J Čebyševskij sbornik
%D 2018
%P 298-310
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a23/
%G ru
%F CHEB_2018_19_3_a23
V. N. Chubarikov. On complete rational trigonometric sums and integrals. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 298-310. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a23/