Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a22, author = {G. V. Fedorov}, title = {Periodic continued fractions and $S$-units with second degree valuations in hyperelliptic fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {282--297}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a22/} }
TY - JOUR AU - G. V. Fedorov TI - Periodic continued fractions and $S$-units with second degree valuations in hyperelliptic fields JO - Čebyševskij sbornik PY - 2018 SP - 282 EP - 297 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a22/ LA - ru ID - CHEB_2018_19_3_a22 ER -
G. V. Fedorov. Periodic continued fractions and $S$-units with second degree valuations in hyperelliptic fields. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 282-297. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a22/
[1] N. H. Abel, “Uber die Integration der Differential-Formel $\rho \text{d}x / \sqrt{R}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826, no. 1, 185–221 | MR | Zbl
[2] P. L. Chebychev, “Sur l'integration de la differential $\frac{x+A}{\sqrt{x^4 + \alpha x^3 + \beta x^2 + \gamma}}\text{d}x$”, J. Math. Pures Appl., 2:9 (1864), 225–246
[3] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | MR | Zbl
[4] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | MR | Zbl
[5] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | MR | Zbl
[6] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | MR | Zbl
[7] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | MR | Zbl
[8] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | MR | Zbl
[9] Petrunin M. M., “О периодичности квадратных корней в гиперэллиптических полях”, ДАН, 474:2 (2017), 155–158 | Zbl
[10] Platonov V. P., Petrunin M. M., “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | MR | Zbl
[11] Platonov V. P., Petrunin M. M., “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | MR | Zbl
[12] Platonov V. P., Fedorov G. V., “S-Units and Periodicity of Continued Fractions in Hyperelliptic Fields”, Dokl. Math., 92:3 (2015), 752–756 | MR | Zbl
[13] Zhgoon V. S., “On generalized jacobians and retional continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | MR
[14] Kuznetsov Y. V., Shteinikov Y. N., “On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and S-units”, Chebyshevskii Sbornik, 18:4 (2017), 260–267 (In Russ.) | MR
[15] Petrunin M. M., “Calculation of the fndamental S-units in hyperelliptic fields of genus 2 and the torsion problem in the jacobians of hyperelliptic curves”, Chebyshevskii Sbornik, 16:4 (2015), 250–283 (In Russ.) | MR | Zbl
[16] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988; Mumford D., Tata Lectures on Theta I, Progress in Mathematics, 28, 1983 ; Tata Lectures on Theta II, 1984 | MR | Zbl | MR | Zbl