On rational analogs of Nelson--Hadwiger's and Borsuk's problems
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 270-281

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider affine-rational analogs of Nelson–Hadwiger problem on finding the chromatic number of the rational space and Borsuk's problem on partitioning into parts of smaller diameter. New lower bounds are proved. In particular, bounds on the minimum dimension of a counterexample to Borsuk's conjecture are found.
Keywords: Chromatic number, unit-distance graphs, Borsuk's problem.
@article{CHEB_2018_19_3_a21,
     author = {A. Sokolov and A. M. Raigorodskiy},
     title = {On rational analogs of {Nelson--Hadwiger's} and {Borsuk's} problems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {270--281},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/}
}
TY  - JOUR
AU  - A. Sokolov
AU  - A. M. Raigorodskiy
TI  - On rational analogs of Nelson--Hadwiger's and Borsuk's problems
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 270
EP  - 281
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/
LA  - ru
ID  - CHEB_2018_19_3_a21
ER  - 
%0 Journal Article
%A A. Sokolov
%A A. M. Raigorodskiy
%T On rational analogs of Nelson--Hadwiger's and Borsuk's problems
%J Čebyševskij sbornik
%D 2018
%P 270-281
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/
%G ru
%F CHEB_2018_19_3_a21
A. Sokolov; A. M. Raigorodskiy. On rational analogs of Nelson--Hadwiger's and Borsuk's problems. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 270-281. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/