Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a21, author = {A. Sokolov and A. M. Raigorodskiy}, title = {On rational analogs of {Nelson--Hadwiger's} and {Borsuk's} problems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {270--281}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/} }
A. Sokolov; A. M. Raigorodskiy. On rational analogs of Nelson--Hadwiger's and Borsuk's problems. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 270-281. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a21/
[1] A.M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters”, Thirty Essays on Geometric Graph Theory, ed. J. Pach, Springer, 2013, 429–460 | MR | Zbl
[2] P.K. Agarwal, J. Pach, Combinatorial geometry, John Wiley and Sons Inc., New York, 1995 | MR | Zbl
[3] V. Klee, S. Wagon, Old and new unsolved problems in plane geometry and number theory, Math. Association of America, 1991 | MR | Zbl
[4] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, 2005 | MR | Zbl
[5] L.A. Székely, “Erdős on unit distances and the Szemerédi – Trotter theorems”, Paul Erdős and his Mathematics, Bolyai Series, 11, J. Bolyai Math. Soc., Springer, Budapest, 2002, 649–666 | MR | Zbl
[6] A. Soifer, The Mathematical Coloring Book, Springer, 2009 | MR | Zbl
[7] A. de Grey, The chromatic number of the plane is at least 5, April 2018, arXiv: 1804.02385 | MR
[8] A.M. Raigorodskii, “The Borsuk problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | MR | Zbl
[9] A.M. Raigorodskii, “The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs”, Sbornik Math., 196:1 (2005), 115–146 | MR | Zbl
[10] A.M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemporary Mathematics, 625, AMS, 2014, 93–109 | MR | Zbl
[11] A.M. Raigorodskii, “Combinatorial geometry and coding theory”, Fundamenta Informatica, 145 (2016), 359–369 | MR | Zbl
[12] L.I. Bogoliubsky, A.M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $ l_1, l_2 $”, Math. Notes., 105:2 (2019), 180–203 | MR | MR
[13] D.A. Zakharov, A.M. Raigorodskii, “Clique-chromatic numbers of graphs of intersections”, Math. Notes., 105:1 (2019), 137–139 | MR | Zbl
[14] E.A. Shishunov, A.M. Raigorodskii, “On the independence numbers of some distance graphs with vertices in $ \{-1,0,1\}^n $”, Doklady Math., 99:2 (2019), 165–166 | MR | Zbl
[15] O. A. Kostina, “On Lower Bounds for the Chromatic Number of Spheres”, Math. Notes, 105:1 (2019), 16–27 | MR | Zbl
[16] F.A. Pushnyakov, “On the number of edges in induced subgraphs of some distance graphs”, Math. Notes, 105:4 (2019) | MR | Zbl
[17] Yu. A. Demidovich, “Distance graphs in rational spaces with large chromatic number and without cliques of given size”, Math. Notes, 106:1 (2019) | MR | Zbl
[18] A.M. Raigorodskii, A.B. Kupavskii, “On the chromatic numbers of small-dimensional Euclidean spaces”, Electronic Notes in Discrete Mathematics, 34 (2009), 435–439 | MR | Zbl
[19] A. Ya. Kanel-Belov, V. A. Voronov, D. D. Cherkashin, “On the chromatic number of infinitesimal plane layer”, St. Petersburg Math. J., 29:5 (2018), 761–775 | MR | Zbl
[20] D.D. Cherkashin, A.M. Raigorodskii, “On the chromatic numbers of small-dimensional spaces”, Doklady Math., 95:1 (2017), 5–6 | MR | MR | Zbl
[21] D. Cherkashin, A. Kulikov, A. Raigorodskii, “On the chromatic numbers of small-dimensional Euclidean spaces”, Discrete and Applied Math., 243 (2018), 125–131 | MR | Zbl
[22] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9 (2000), 113–126 | MR | Zbl
[23] A.M. Raigorodskii, “On the chromatic number of a space with $ l_q $-norm”, Russian Math. Surveys, 59:5 (2004), 973–975 | MR | Zbl
[24] A.M. Raigorodskii, I.M. Shitova, “On the chromatic numbers of real and rational spaces with several real or rational forbidden distances”, Sbornik Math., 199:4 (2008), 579–612 | MR | Zbl
[25] E.I. Ponomarenko, A.M. Raigorodskii, “New lower bound on the chromatic number of the rational space”, Russian Math. Surveys, 68:5 (2013), 960–962 | MR | Zbl
[26] E.I. Ponomarenko, A.M. Raigorodskii, “New lower bound on the chromatic number of the rational space with one or two forbidden distances”, Math. Notes, 97:2 (2015), 255–261
[27] Yu. A. Demidovich, “Lower Bound for the Chromatic Number of a Rational Space with Metric $l_1$ and with One Forbidden Distance”, Math. Notes, 102:4 (2017), 492–507 | MR | Zbl
[28] E.I. Ponomarenko, A.M. Raigorodskii, “On the chromatic number of the space $ {\mathbb Q}^n $”, Proceedings of Moscow Institute of Physics and Technology, 4:1 (2012), 127–130
[29] A. Sokolov, “On the Chromatic Numbers of Rational Spaces”, Math. Notes, 103 (2018), 1–2 | MR | Zbl
[30] V.G. Boltyanski, H. Martini, P.S. Soltan, Excursions into combinatorial geometry, Universitext, Springer, Berlin, 1997 | MR | Zbl
[31] A.M. Raigorodskii, “Around Borsuk's conjecture”, J. of Math. Sci., 154:4 (2008), 604–623 | MR | Zbl
[32] A.M. Raigorodskii, “Three lectures on the Borsuk partition problem”, London Mathematical Society Lecture Note Series, 347, 2007, 202–248 | MR
[33] A.M. Raigorodskii, “The Borsuk and Grünbaum problems for lattice polytopes”, Izvestiya Math., 69:3 (2005), 513–537 | MR | Zbl
[34] A.M. Raigorodskii, A.B. Kupavskii, E.I. Ponomarenko, “On some analogs of Borsuk's problem in the space $\mathbb Q^n$”, Proceedings of of Moscow Institute of Physics and Technology, 4:1 (2012), 81–90
[35] K.B. Chilakamarri, “Unit-distance graphs in rational $n$-spaces”, Discrete Math., 69 (1988), 213–218 | MR | Zbl
[36] C. Elsholtz, W. Klotz, “Maximal Dimension of Unit Simplices”, Discrete Comput Geom., 34 (2005), 167–177 | MR | Zbl
[37] A. Bondarenko, “On Borsuk's Conjecture for Two-Distance Sets”, Discrete Comput Geom., 51 (2014), 509–515 | MR | Zbl
[38] N.G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Proc. Koninkl. Nederl. Acad. Wet., Ser. A, 54:5 (1951), 371–373 | MR | Zbl