On algebra and arithmetic of binomial and Gaussian coefficients
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 257-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider questions relating to algebraic and arithmetic properties of such binomial, polynomial and Gaussian coefficients. For the central binomial coefficients $\binom{2p}{p}$ and $\binom{2p-1}{p-1}$, a new comparability property modulo $p^3 \cdot \left( 2p-1 \right)$, which is not equal to the degree of a prime number, where $p$ and $(2p-1)$ are prime numbers, Wolstenholm's theorem is used, that for $p \geqslant 5$ these coefficients are respectively comparable with the numbers 2 and 1 modulo $p^3$. In the part relating to the Gaussian coefficients $\binom{n}{k}_q$, the algebraic and arithmetic properties of these numbers are investigated. Using the algebraic interpretation of the Gaussian coefficients, it is established that the number of $k$-dimensional subspaces of an $n$-dimensional vector space over a finite field of q elements is equal to the number of $(n-k)$ -dimensional subspaces of it, and the number $q$ on which The Gaussian coefficient must be the power of a prime number that is a characteristic of this finite field. Lower and upper bounds are obtained for the sum $\sum_{k = 0}^{n} \binom{n}{k}_q$ of all Gaussian coefficients sufficiently close to its exact value (a formula for the exact value of such a sum has not yet been established), and also the asymptotic formula for $q \to \infty$. In view of the absence of a convenient generating function for Gaussian coefficients, we use the original definition of the Gaussian coefficient $\binom{n}{k}_q$, and assume that $q>1$. In the study of the arithmetic properties of divisibility and the comparability of Gaussian coefficients, the notion of an antiderivative root with respect to a given module is used. The conditions for the divisibility of the Gaussian coefficients $\binom{p}{k}_q$ and $\binom{p^2}{k}_q$ by a prime number $p$ are obtained, and the sum of all these coefficients modulo a prime number $p$. In the final part, some unsolved problems in number theory are presented, connected with binomial and Gaussian coefficients, which may be of interest for further research.
Keywords: central binomial coefficients, Wolstenholme's theorem, Gaussian coefficient, the sum of Gaussian coefficients, divisibility by prime number, congruences modulo, primitive roots for this module.
@article{CHEB_2018_19_3_a20,
     author = {U. M. Pachev},
     title = {On algebra and arithmetic of binomial and {Gaussian} coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a20/}
}
TY  - JOUR
AU  - U. M. Pachev
TI  - On algebra and arithmetic of binomial and Gaussian coefficients
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 257
EP  - 269
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a20/
LA  - ru
ID  - CHEB_2018_19_3_a20
ER  - 
%0 Journal Article
%A U. M. Pachev
%T On algebra and arithmetic of binomial and Gaussian coefficients
%J Čebyševskij sbornik
%D 2018
%P 257-269
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a20/
%G ru
%F CHEB_2018_19_3_a20
U. M. Pachev. On algebra and arithmetic of binomial and Gaussian coefficients. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 257-269. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a20/

[1] P. Bachmann, Niedere Zahlen theorie, v. I, Teil, Leipzig, 1902, 402 pp. ; v. II, 1912, 480 pp. | MR

[2] J. Wolstenholme, “On certain properties of prime numbers”, Quart. J. Pure Appl. Math., 5 (1862), 35–39

[3] Vinberg E. B., Amazing problems of binomial coefficients, M., 2008, 62 pp. (Russian)

[4] C. F. Gauss, “Summatio quarumdam serierum singularium”, Comment. Soc. Reg. Sci. Gottingensis, v. 1, 1811; Werke, v. 2, 11–45

[5] Stanley R., Enumerative combinatorics, v. 1, The Wadsworth Brooks/Cole Mathematics Series, California, 1986 | MR | Zbl

[6] Shokuev V. N., Gaussian coefficients, Nalchik, 1988, 98 pp. (Russian)

[7] Shokuev V. N., “Foundations of enumeration theory for finite nilpotent groups”, Zap. Nauchn. Sem. POMI, 211, 1994, 174–183 (Russian)

[8] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer, 1982, 385 pp. | MR | MR | Zbl

[9] A. S. Dzhumadil'daev, D. A. Yeliussizov, “Wolstenholme's theorem for what binomial coefficients”, Сибирские электронные математические известия, 9 (2012), 460–463 | MR | Zbl

[10] P. Erdös, “On some divisibility properties of $\binom{2n}{n}$”, Canad. Math. Bull., 7:4 (1964), 513–518 | MR | Zbl

[11] R. Moser, “Insolvability of $\binom{2n}{n} = \binom{2n}{a} \cdot \binom{2b}{b}$”, Canad. Math. Bull., 6 (1963), 167–169 | MR | Zbl

[12] M. Ainger, Combinatorial theory, Springer-Verlang, Berlin–Heidelberg–New York, 1979

[13] G. Polia, G. L. Aalexanderson, “Gaussian binomial coefficients”, Elemente der Mathematik, 26:5 (1971), 102–109 | MR

[14] W. Lipski, Combinatorics for programmers, Mir, M., 1988, 213 pp. (Russian)

[15] S. V. Yablonsky, Introduction to discrete mathematics, Nauka, M., 1986, 384 pp. (Russian) | MR

[16] V. I. Bernik, E. J. Kovalevsky, Unsolved problems in number theory, Preprint No 35(435), Minsk, 1990, 39 pp. (Russian) | Zbl

[17] E. F. Ecklund (Jr), R. B. Eggleton, P. Erdös, J. Z. Selfridge, “On the prime factorisation of binomial coefficients”, Austral. Math. Soc., Ser. A, 26 (1978), 257–269 | MR | Zbl