Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a2, author = {M. Huxley and N. Watt}, title = {Mertens sums requiring fewer values of the {M\"obius} function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {20--34}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/} }
M. Huxley; N. Watt. Mertens sums requiring fewer values of the M\"obius function. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/
[1] J. P. Cardinal, “Symmetric matrices related to the Mertens function”, Linear Algebra Appl., 432 (2010), 161–172 | MR | Zbl
[2] D. R. Heath-Brown, “Prime Numbers in Short Intervals and a Generalised Vaughan Identity”, Can. J. Math., 34:6 (1982), 1365–1377 | MR | Zbl
[3] M. N. Huxley, “Exponential Sums and Lattice Points III”, Proc. London Math. Soc. (3), 87 (2003), 591–609 | MR | Zbl
[4] A. Ivić, The Riemann Zeta-Function, Dover Publications, Mineola, New York, 2003 | MR | Zbl
[5] H. Iwaniec, E. Kowalski, Analytic Number Theory, A.M.S. Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[6] Yu. V. Linnik, “All large numbers are sums of a prime and two squares I”, Mat. Sbornik Nov. Ser., 52 (94) (1960), 561–700 | MR
[7] Yu. V. Linnik, “All large numbers are sums of a prime and two squares II”, Mat. Sbornik Nov. Ser., 53 (95) (1961), 3–38 | MR
[8] E. Meissel, “Observationes quaedam in theoria numerorum”, J. Reine Angew. Math., 48 (1854), 301–316 | MR | Zbl
[9] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007 | MR | Zbl
[10] On-Line Encyclopedia of Integer Sequences. “Sloane's”, http://oeis.org
[11] P. Shiu, “A Brun-Titchmarsh theorem for multiplicative functions”, J. Reine Angew. Math., 313 (1980), 161–170 | MR | Zbl
[12] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, revised by D. R. Heath-Brown, Oxford Univ. Press, 1986 | MR | Zbl
[13] R. C. Vaughan, “An Elementary Method in Prime Number Theory”, Recent Progress in Analytic Number Theory (Durham, 1979), v. 1, Academic Press, London–New York, 1981, 341–348 | MR