Mertens sums requiring fewer values of the M\"obius function
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss certain identities involving $\mu(n)$ and $M(x) = \sum _{n \leq x}\mu (n)$, the functions of Möbius and Mertens. These allow calculation of $M(N^d)$, for $d=1,2,3,\ldots\ $, as a sum of $O_d \left( N^d(\log N)^{2d - 2}\right)$ terms, each a product of the form $\mu(n_1) \cdots \mu(n_r)$ with $r\leq d$ and $n_1, \ldots , n_r\leq N$. We prove a more general identity in which $M(N^d)$ is replaced by $M(g,K)=\sum_{n\leq K}\mu(n)g(n)$, where $g(n)$ is an arbitrary totally multiplicative function, while each $n_j$ has its own range of summation, $1,\ldots , N_j$. This is not new, except perhaps in that $N_1,\ldots , N_d$ are arbitrary, but our proof (inspired by an identity of E. Meissel, 1854) is new. We are mainly interested in the case $d=2$, $K=N^2$, $N_1=N_2=N$, where the identity has the form $M(g, N^2) = 2 M(g,N) - \mathbf{m}^{\mathrm{T}} A \mathbf{ m}$, with $A$ being the $N\times N$ matrix of elements $a_{mn}=\sum _{k \leq N^2 /(mn)}\,g(k)$, while $\mathbf{ m}=(\mu (1)g(1),\ldots ,\mu (N)g(N))^{\mathrm{T}}$. Our results in Sections 2 and 3 of the paper assume that $g(n)$ equals $1$ for all $n$. The Perron-Frobenius theorem applies in this case: we find that $A$ has one large positive eigenvalue, approximately $(\pi^2 /6)N^2$, with eigenvector approximately $\mathbf{f} = (1,1/2,1/3,\ldots ,1/N)^{\mathrm{T}}$, and that, for large $N$, the second-largest eigenvalue lies in $(-0.58 N, -0.49 N)$. Section 2 includes estimates for the traces of $A$ and $A^2$ (though, for $\mathrm{Tr}(A^2)$, we omit part of the proof). In Section 3 we discuss ways to approximate $\mathbf{ m}^{\mathrm{T}} A \mathbf{ m}$, using the spectral decomposition of $A$, or (alternatively) Perron's formula: the latter approach leads to a contour integral involving the Riemann zeta-function. We also discuss using the identity $A = N^{2\,} \mathbf{ f}^{\,} \!\mathbf{ f}^T - \frac{1}{2}\mathbf{ u} \mathbf{u}^T + Z$, where $\mathbf{u} = (1,\ldots ,1)^{\mathrm{T}}$ and $Z$ is the $N\times N$ matrix of elements $z_{mn} = - \psi(N^2 / (mn))$, with $\psi(x)=x - \lfloor x\rfloor - \frac{1}{2}$.
Keywords: Möbius function, Mertens function, completely multiplicative function, Meissel, Linnik's identity, Vaughan's identity, symmetric matrix, Perron-Frobenius, eigenvalue, eigenvector, Perron's formula, Riemann zeta-function.
@article{CHEB_2018_19_3_a2,
     author = {M. Huxley and N. Watt},
     title = {Mertens sums requiring fewer values of the {M\"obius} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/}
}
TY  - JOUR
AU  - M. Huxley
AU  - N. Watt
TI  - Mertens sums requiring fewer values of the M\"obius function
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 20
EP  - 34
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/
LA  - en
ID  - CHEB_2018_19_3_a2
ER  - 
%0 Journal Article
%A M. Huxley
%A N. Watt
%T Mertens sums requiring fewer values of the M\"obius function
%J Čebyševskij sbornik
%D 2018
%P 20-34
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/
%G en
%F CHEB_2018_19_3_a2
M. Huxley; N. Watt. Mertens sums requiring fewer values of the M\"obius function. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a2/

[1] J. P. Cardinal, “Symmetric matrices related to the Mertens function”, Linear Algebra Appl., 432 (2010), 161–172 | MR | Zbl

[2] D. R. Heath-Brown, “Prime Numbers in Short Intervals and a Generalised Vaughan Identity”, Can. J. Math., 34:6 (1982), 1365–1377 | MR | Zbl

[3] M. N. Huxley, “Exponential Sums and Lattice Points III”, Proc. London Math. Soc. (3), 87 (2003), 591–609 | MR | Zbl

[4] A. Ivić, The Riemann Zeta-Function, Dover Publications, Mineola, New York, 2003 | MR | Zbl

[5] H. Iwaniec, E. Kowalski, Analytic Number Theory, A.M.S. Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[6] Yu. V. Linnik, “All large numbers are sums of a prime and two squares I”, Mat. Sbornik Nov. Ser., 52 (94) (1960), 561–700 | MR

[7] Yu. V. Linnik, “All large numbers are sums of a prime and two squares II”, Mat. Sbornik Nov. Ser., 53 (95) (1961), 3–38 | MR

[8] E. Meissel, “Observationes quaedam in theoria numerorum”, J. Reine Angew. Math., 48 (1854), 301–316 | MR | Zbl

[9] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007 | MR | Zbl

[10] On-Line Encyclopedia of Integer Sequences. “Sloane's”, http://oeis.org

[11] P. Shiu, “A Brun-Titchmarsh theorem for multiplicative functions”, J. Reine Angew. Math., 313 (1980), 161–170 | MR | Zbl

[12] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, revised by D. R. Heath-Brown, Oxford Univ. Press, 1986 | MR | Zbl

[13] R. C. Vaughan, “An Elementary Method in Prime Number Theory”, Recent Progress in Analytic Number Theory (Durham, 1979), v. 1, Academic Press, London–New York, 1981, 341–348 | MR