Generalization of A.~I.~Mal'tsev problem on commutativa subalgebras for Chevalley algebras
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 231-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1945 A. I. Mal'tsev investigated the problem on description of abelian subgroups of largest dimension in complex simple Lie groups. This problem's arisen from the theorem of I. Schur: The largest dimension of abelian subgroups of the group $SL(n,\mathbb{C})$ equals to $[n^2/4]$ and abelian subgroups of such dimension for $n>3$ are transformed by automorphisms into each other. A. I. Mal'tsev solved his problem by the reduction to complex Lie algebras. In Cartan – Killing theory semisimple complex Lie algebras are classified making use of the classification of root systems in Euclidean space $V$. A Chevalley algebra $\mathcal{L}_\Phi(K)$ is associated with the indecomposable root system $\Phi$ and with the field $K$; the base of the Chevalley algebra consists of the base of certain abelian self-normalized subalgebra $H$ and of the elements $e_r$ $(r\in \Phi)$ with $H$-invariant subspace $Ke_r$. The elements $e_r$ $(r\in\Phi^+)$ form a base of niltriangular subalgebra $N\Phi(K)$. Methods of A. I. Mal'tsev were developed for the solving of the problem on large abelian subgroups in finite Chevalley groups. In this article we use the worked out methods for the reduction of A. I. Mal'cev theorem for the Chevalley algebras. We investigate the problems: (A) to describe commutative subalgebras of largest dimension in a Chevalley algebra $\mathcal{L}_\Phi(K)$ over arbitrary field $K$. (B) to describe commutative subalgebras of largest dimension in subalgebra $N\Phi(K)$ of the Chevalley algebra $\mathcal{L}_\Phi(K)$ over arbitrary field $K$. In this article we give the description of all commutative subalgebras of largest dimension in subalgebra $N\Phi(K)$ of classical type over arbitrary field $K$ up to automorphisms of algebra $\mathcal{L}_\Phi(K)$ and of subalgebra $N\Phi(K)$.
Keywords: Chevalley algebra, commutative subalgebra, niltriangular subalgebra.
@article{CHEB_2018_19_3_a18,
     author = {V. M. Levchuk and G. S. Suleimanova},
     title = {Generalization of {A.~I.~Mal'tsev} problem on commutativa subalgebras for {Chevalley} algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a18/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - G. S. Suleimanova
TI  - Generalization of A.~I.~Mal'tsev problem on commutativa subalgebras for Chevalley algebras
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 231
EP  - 240
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a18/
LA  - ru
ID  - CHEB_2018_19_3_a18
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A G. S. Suleimanova
%T Generalization of A.~I.~Mal'tsev problem on commutativa subalgebras for Chevalley algebras
%J Čebyševskij sbornik
%D 2018
%P 231-240
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a18/
%G ru
%F CHEB_2018_19_3_a18
V. M. Levchuk; G. S. Suleimanova. Generalization of A.~I.~Mal'tsev problem on commutativa subalgebras for Chevalley algebras. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 231-240. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a18/

[1] A. I. Mal'tsev, “Commutative subalgebras of semi-simple Lie algebras”, Izvestia Akad. Nauk SSSR, Ser. Mat., 9:4 (1945), 291–300 (in Russian) | MR | Zbl

[2] I. Schur, “Zur theorie der vertauschbaren matrizen”, J. reine und angew. Math., 130 (1905), 66–76 | MR | Zbl

[3] R. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl

[4] M. J. J. Barry, “Large Abelian subgroups of Chevalley groups”, J. Austral. Math. Soc. Ser. A, 27:1 (1979), 59–87 | MR | Zbl

[5] M. J. J. Barry, W. J. Wong, “Abelian 2-subgroups of finite symplectic groups in characteristic 2”, J. Austral. Math. Soc. Ser. A, 33:3 (1982), 345–350 | MR | Zbl

[6] W. J. Wong, “Abelian unipotent subgroups of finite orthogonal groups”, J. Austral. Math. Soc., Ser. A, 32:2 (1982), 223–245 | MR | Zbl

[7] W. J. Wong, “Abelian unipotent subgroups of finite unitary and symplectic groups”, J. Austral. Math. Soc., Ser. A, 33:2 (1982), 331–344 | MR | Zbl

[8] A. S. Kondrat'ev, “Subgroups of finite Chevalley groups”, Russian Math. Surveys, 41:1 (1986), 65–118 | MR | Zbl

[9] E. P. Vdovin, “Maximal Orders of abelian Subgroups in Finite Chevalley Groups”, Mat. Zametki, 69:4 (2001), 524–549 | MR | Zbl

[10] E. P. Vdovin, “Large abelian unipotent subgroups of finite Chevalley groups”, Algebra and Logic, 40:5 (2001), 292–305 | MR | Zbl

[11] V. M. Levchuk, G. S. Suleimanova, “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, J. Algebra, 349:1 (2012), 98–116 | MR | Zbl

[12] V. M. Levchuk, G. S. Suleimanova, “Thompson subgroups and large abelian unipotent subgroups of Lie-type groups”, J. Siberian Federal University. Math. Physics, 6:1 (2013), 64–74

[13] V. M. Levchuk, G. S. Suleimanova, “The generalized Mal'cev problem on abelian subalgebras of the Chevalley algebras”, Lobachevskii Journal of Mathematics, 86:4 (2015), 384–388 | MR

[14] N. Bourbaki, Groupes et algebres de Lie, Chapt. IV–VI, Hermann, Paris, 1968 | MR | MR | Zbl

[15] E. A. Kirillova, G. S. Suleimanova, “Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 3, 98–108 | MR

[16] V. M. Levchuk, “Connections between a unitriangular group and certain rings. 2. Groups of automorphisms”, Siberian mathematical journal, 24:4 (1983), 543–557 | MR | Zbl | Zbl

[17] V. M. Levchuk, “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra and Logic, 29:2 (1990), 211–224 | MR | Zbl

[18] V. M. Levchuk, A. V. Litavrin, “Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras”, Siberian Electronic mathematical Reports, 13 (2016), 467–477 | MR | Zbl