Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a17, author = {V. Franckevi\v{c} and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas}, title = {On joint value distribution of {Hurwitz} zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {219--230}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/} }
TY - JOUR AU - V. Franckevič AU - A. Laurinčikas AU - D. Šiaučiūnas TI - On joint value distribution of Hurwitz zeta-functions JO - Čebyševskij sbornik PY - 2018 SP - 219 EP - 230 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/ LA - en ID - CHEB_2018_19_3_a17 ER -
V. Franckevič; A. Laurinčikas; D. Šiaučiūnas. On joint value distribution of Hurwitz zeta-functions. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 219-230. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/
[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Balčiūnas A., Dubickas A., Laurinčikas A., “On the Hurwitz zeta-function with algebraic irrational parameter”, Math. Notes, 105:2 (2019), 173–179 | MR | Zbl
[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[4] J. B. Conway, Functions of one complex variable, Springer, Berlin–Heidelberg–New York, 1978 | MR
[5] S. M. Gonek, Analytic properties of zeta and $L$-functions, Thesis, University of Michigan, Ann Arbor, 1979 | MR
[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 | MR | MR
[7] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[8] A. Laurinčikas, “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl
[9] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl
[10] T. Nakamura, “The existence and the non-existence of joint $t$-universality for Lerch zeta-functions”, J. Number Theory, 125 (2007), 424–441 | MR | Zbl
[11] J. Steuding, Value-Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer, Berlin–Heidelberg-New York, 2007 | MR | Zbl
[12] Math. USSR Izv., 9 (1975), 443–453 | Zbl
[13] S. M. Voronin, “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | Zbl
[14] Voronin S. M., Analytic properties of Dirichlet generating functions of arithmetic objects, doct. diss., MIAS, M., 1977 (in Russian)