On joint value distribution of Hurwitz zeta-functions
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 219-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that some zeta and $L$-functions are universal in the Voronin sense, i.e., they approximate a wide class of analytic functions. Also, some of them are jointly universal. In this case, a collection of analytic functions is simultaneously approximated by a collection of zeta-functions. In the paper, a problem related to joint universality of Hurwitz zeta-functions is discussed. It is known that the Hurwitz zeta-functions $\zeta(s,\alpha_1), \dots, \zeta(s,\alpha_r)$ are jointly universal if the parameters $\alpha_1,\dots, \alpha_r$ are algebraically independent over the field of rational numbers $\mathbb{Q}$, or, more generally, if the set $\{\log(m+\alpha_j): m\in \mathbb{N}_0,\; j=1,\dots, r\}$ is linearly independent over $\mathbb{Q}$. We consider the case of arbitrary parameters $\alpha_1,\dots, \alpha_r$ and obtain that there exists a non-empty closed set $F_{\alpha_1,\dots, \alpha_r}$ of the space $H^r(D)$ of analytic functions on the strip $D=\left\{s\in \mathbb{C}:\frac{1}{2}\sigma1\right\}$ such that, for every compact sets $K_1,\dots, K_r\subset D$, $f_1,\dots, f_r\in F_{\alpha_1,\dots, \alpha_r}$ and $\varepsilon>0$, the set $\left\{\tau\in \mathbb{R}: \sup_{1\leqslant j\leqslant r} \sup_{s\in K_j} |\zeta(s+i\tau,\alpha_j)-f_j(s)|\varepsilon\right\}$ has a positive lower density. Also, the case of positive density of the latter set is discussed.
Keywords: Hurwitz zeta-function, probability measure, space of analytic functions, universality, weak convergence.
@article{CHEB_2018_19_3_a17,
     author = {V. Franckevi\v{c} and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas},
     title = {On joint value distribution of {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/}
}
TY  - JOUR
AU  - V. Franckevič
AU  - A. Laurinčikas
AU  - D. Šiaučiūnas
TI  - On joint value distribution of Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 219
EP  - 230
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/
LA  - en
ID  - CHEB_2018_19_3_a17
ER  - 
%0 Journal Article
%A V. Franckevič
%A A. Laurinčikas
%A D. Šiaučiūnas
%T On joint value distribution of Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2018
%P 219-230
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/
%G en
%F CHEB_2018_19_3_a17
V. Franckevič; A. Laurinčikas; D. Šiaučiūnas. On joint value distribution of Hurwitz zeta-functions. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 219-230. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Balčiūnas A., Dubickas A., Laurinčikas A., “On the Hurwitz zeta-function with algebraic irrational parameter”, Math. Notes, 105:2 (2019), 173–179 | MR | Zbl

[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[4] J. B. Conway, Functions of one complex variable, Springer, Berlin–Heidelberg–New York, 1978 | MR

[5] S. M. Gonek, Analytic properties of zeta and $L$-functions, Thesis, University of Michigan, Ann Arbor, 1979 | MR

[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 | MR | MR

[7] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[8] A. Laurinčikas, “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl

[9] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[10] T. Nakamura, “The existence and the non-existence of joint $t$-universality for Lerch zeta-functions”, J. Number Theory, 125 (2007), 424–441 | MR | Zbl

[11] J. Steuding, Value-Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer, Berlin–Heidelberg-New York, 2007 | MR | Zbl

[12] Math. USSR Izv., 9 (1975), 443–453 | Zbl

[13] S. M. Voronin, “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | Zbl

[14] Voronin S. M., Analytic properties of Dirichlet generating functions of arithmetic objects, doct. diss., MIAS, M., 1977 (in Russian)