On joint value distribution of Hurwitz zeta-functions
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 219-230

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that some zeta and $L$-functions are universal in the Voronin sense, i.e., they approximate a wide class of analytic functions. Also, some of them are jointly universal. In this case, a collection of analytic functions is simultaneously approximated by a collection of zeta-functions. In the paper, a problem related to joint universality of Hurwitz zeta-functions is discussed. It is known that the Hurwitz zeta-functions $\zeta(s,\alpha_1), \dots, \zeta(s,\alpha_r)$ are jointly universal if the parameters $\alpha_1,\dots, \alpha_r$ are algebraically independent over the field of rational numbers $\mathbb{Q}$, or, more generally, if the set $\{\log(m+\alpha_j): m\in \mathbb{N}_0,\; j=1,\dots, r\}$ is linearly independent over $\mathbb{Q}$. We consider the case of arbitrary parameters $\alpha_1,\dots, \alpha_r$ and obtain that there exists a non-empty closed set $F_{\alpha_1,\dots, \alpha_r}$ of the space $H^r(D)$ of analytic functions on the strip $D=\left\{s\in \mathbb{C}:\frac{1}{2}\sigma1\right\}$ such that, for every compact sets $K_1,\dots, K_r\subset D$, $f_1,\dots, f_r\in F_{\alpha_1,\dots, \alpha_r}$ and $\varepsilon>0$, the set $\left\{\tau\in \mathbb{R}: \sup_{1\leqslant j\leqslant r} \sup_{s\in K_j} |\zeta(s+i\tau,\alpha_j)-f_j(s)|\varepsilon\right\}$ has a positive lower density. Also, the case of positive density of the latter set is discussed.
Keywords: Hurwitz zeta-function, probability measure, space of analytic functions, universality, weak convergence.
@article{CHEB_2018_19_3_a17,
     author = {V. Franckevi\v{c} and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas},
     title = {On joint value distribution of {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/}
}
TY  - JOUR
AU  - V. Franckevič
AU  - A. Laurinčikas
AU  - D. Šiaučiūnas
TI  - On joint value distribution of Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 219
EP  - 230
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/
LA  - en
ID  - CHEB_2018_19_3_a17
ER  - 
%0 Journal Article
%A V. Franckevič
%A A. Laurinčikas
%A D. Šiaučiūnas
%T On joint value distribution of Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2018
%P 219-230
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/
%G en
%F CHEB_2018_19_3_a17
V. Franckevič; A. Laurinčikas; D. Šiaučiūnas. On joint value distribution of Hurwitz zeta-functions. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 219-230. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a17/