The estimate of weighted Kloosterman sums by additive shift
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 183-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

Additive shift is a widely used tool in the estimating of exponential sums and character sums. It bases on the replacement of the summation variable $n$ by the expression of the type $n+x$ and the summation over artificially introduced variable $x$. The transformation of the simple sum to multiple sum gives an additional opportunities, which allow one on obtain the non-trivial bound for the initial sum. This shift was widely used by I.G. van der Corput, I.M. Vinogradov, D.A. Burgess, A.A. Karatsuba and many other researchers. It became very useful tool also in dealing with character sums in finite fields and with multiple exponential sums. E. Fouvry and P. Michel (1998) and then J. Bourgain (2005) used successfully this shift to the estimation of Kloosterman sums. E. Fouvry and P. Michel combine additive shift with deep-lying results from algebraic geometry. On the contrary, the method of J. Bourgain is completely elementary. For example, it allows to the author to give elementary proof of the estimate of Kloosterman sum prime modulo $q$ with primes in the case when its length $N$ exceeds $q^{\,1/2+\varepsilon}$. In this paper, we give some new elementary applications of additive shift to weighted Kloosterman sums of the type $$ \sum\limits_{n\le N}f(n)\exp{\biggl(\frac{2\pi ia}{q}\,(n+b)^{*}\biggr)},\quad (ab,q)=1. $$ Here $q$ is prime and weight function $f(n)$ is equal to $\tau(n)$, that is, the number of divisors of $n$, or equal to $r(n)$, which is the number of representations of $n$ by the sum of two squares of integers. The bounds for these sums are non-trivial for $N\ge q^{\,2/3+\varepsilon}$. As a corollary of such estimates, we obtain some new results concerning the distribution of the fractional parts of the following type $$ \biggl\{\frac{a}{q}\,(uv+b)^{*}\biggr\},\quad \biggl\{\frac{a}{q}\,(u^{2}+v^{2}+b)^{*}\biggr\}, $$ where the integers $u$, $v$ run through the hyperbolic ($uv\le N$) and circle ($u^{2}+v^{2}\le N$) domains, consequently.
Keywords: inverse residues, Kloosterman sums, additive shift, divisor function.
@article{CHEB_2018_19_3_a14,
     author = {M. A. Korolev},
     title = {The estimate of weighted {Kloosterman} sums by additive shift},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {183--201},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a14/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - The estimate of weighted Kloosterman sums by additive shift
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 183
EP  - 201
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a14/
LA  - ru
ID  - CHEB_2018_19_3_a14
ER  - 
%0 Journal Article
%A M. A. Korolev
%T The estimate of weighted Kloosterman sums by additive shift
%J Čebyševskij sbornik
%D 2018
%P 183-201
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a14/
%G ru
%F CHEB_2018_19_3_a14
M. A. Korolev. The estimate of weighted Kloosterman sums by additive shift. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 183-201. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a14/

[1] Heath-Brown D.R., “Arithmetic applications of Kloosterman sums”, Nieuw Archief voor Wiskunde. Serie 5, 4 (2000), 380–384 | MR | Zbl

[2] Sarnak P., “Kloosterman, qudratic forms and modular forms”, Nieuw Archief voor Wiskunde. Serie 5, 4 (2000), 385–389 | MR | Zbl

[3] Ustinov A.V., Applications of Kloosterman Sums in Arithmetic and Geometry, LAMBERT Academic Publishing, 2011

[4] Iwaniec H., Kowalski E., Analytic Number Theory, Colloquium Publications, 53, Amer. Math. Soc., Providence, Rhode Island, 2004 | MR | Zbl

[5] Hajela D., Pollington A., Smith B., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 31:1 (1988), 32–36 | MR | Zbl

[6] Wang G., Zheng Z., “Kloosterman sums with oscillating coefficients”, Chinese Ann. Math., 19 (1998), 237–242 (kit.) | MR | Zbl

[7] Deng P., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 42:3 (1999), 285–290 | MR | Zbl

[8] Gong K., Jia C., Kloosterman sums with multiplicative coefficients, arXiv: 1401.4556v4 [math.NT] | MR

[9] Korolev M.A, “Short Kloosterman Sums with Weights”, Math. Notes, 88:3 (2010), 374–385 | MR | MR | Zbl

[10] Korolev M.A., “On Kloosterman sums with multiplicative coefficients”, Izv. Math., 2018 | MR | Zbl

[11] van der Corput I.G., “Verschärfung der Abshchätzungen beim Teilerproblem”, Math. Ann., 87 (1922), 39–65 | MR | Zbl

[12] van der Corput I.G., “Neue zahlentheoretische Abshchätzungen”, Math. Ann., 89 (1923), 215–254 | MR

[13] van der Corput I.G., “Neue zahlentheoretische Abshchätzungen”, Math. Zeitschr., 29 (1928), 397–426 | MR | Zbl

[14] Vinogradow I., “On Weyl's sums”, Recueil Mathém. Nouv. sér., 42:5 (1935), 521–530 | Zbl

[15] Vinogradow I., “On asymptotic formula in Warings problem”, Recueil Mathém. Nouv. sér., 1(43):2 (1936), 169–174 | MR

[16] Vinogradov I.M., “A new method in analytic number theory”, Travaux Inst. Math. Stekloff, 10, Acad. Sci. USSR, M.–L., 1937 | MR

[17] Vinogradow I., “Some general lemmas and their application to the estimation of trigonometrical sums”, Recueil Mathém. Nouv. sér., 3(45):3 (1938), 435–471 | Zbl

[18] Vinogradoff I., “Zwei Sätze aus der Analytischen Zahlentheorie”, Acad. Sci. URSS, Fil. Géorgienne, Trav. Inst. math. Tbilissi, 5 (1938), 153–180 | MR

[19] Vinogradow I., “An improvement of the estimation of trigonometrical sums”, Izv. Akad. Nauk SSSR Ser. Mat., 6:1-2 (1942), 33–40

[20] Vinogradov I.M., “The method of trigonometrical sums in the theory of numbers”, Trudy Mat. Inst. Steklov, 23, Acad. Sci. USSR, M.–L., 1947

[21] Vinogradov I.M., “General theorems on the upper bound of the modulus of a trigonometric sum”, Izv. Akad. Nauk SSSR Ser. Mat., 15:2 (1951), 109–130

[22] Vinogradov I.M., “A new estimate of the function $\zeta(1+it)$”, Izv. Akad. Nauk SSSR Ser. Mat., 22:2 (1958), 161–164 | MR | Zbl

[23] Vinogradov I.M., “An estimate for a certain sum extended over the primes of an arithmetic progression”, Izv. Akad. Nauk SSSR. Ser. Mat., 30 (1966), 481–496 | Zbl

[24] Karatsuba A.A., “Trigonometric sums of a special type and their applications”, Izv. Akad. Nauk SSSR Ser. Mat., 28:1 (1964), 237–248 | Zbl

[25] Karatsuba A.A., “On systems of congruences”, Izv. Akad. Nauk SSSR Ser. Mat., 29:4 (1965), 935–944 | Zbl

[26] Karatsuba A.A., “Character sums and primitive roots in finite fields”, Sov. Math., Dokl., 9 (1968), 755–757 | MR | Zbl

[27] Karatsuba A.A., “Estimates of character sums”, Math. USSR-Izv., 4:1 (1970), 19–29 | MR

[28] Karatsuba A.A., “On sums of characters with primes”, Sov. Math., Dokl., 11 (1970), 135–137 | MR | Zbl

[29] Karatsuba A.A., “Estimates for trigonometric sams by Vinogradov's method and some applications”, Tr. Mat. Inst. Steklova, 112, 1971, 241–255 | MR | Zbl

[30] Karatsuba A.A., “Sums of characters in sequences of shifted prime numbers, with applications”, Math. Notes, 17:1 (1975), 91–93 | MR | Zbl

[31] Arkhipov G.I., Karatsuba A.A., Chubarikov V., “An upper bound of the modulus of a multiple trigonometric sum”, Proc. Steklov Inst. Math., 143 (1980), 1–31 | MR | MR | Zbl

[32] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., “A sharp estimate for the number of solutions of a system of Diophantine equations”, Math. USSR-Izv., 13:3 (1979), 461–497 | MR | Zbl | Zbl

[33] Karatsuba A.A., “Sums of Legendre symbols of polynomials of second degree over prime numbers”, Math. USSR-Izv., 12:2 (1978), 299–308 | MR | Zbl | Zbl

[34] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., “Multiple trigonometric sums and their applications”, Math. USSR-Izv., 17:1 (1981), 1–54 | MR | MR | Zbl

[35] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., “Multiple trigonometric sums”, Proc. Steklov Inst. Math., 151:2 (1982), 1–126 | MR | MR

[36] Burgess D.A., “The distribution of quardratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | MR | Zbl

[37] Burgess D.A., “On character sums and $L$-series. II”, Proc. London Math. Soc., (3)13:1 (1963), 524–536 | MR | Zbl

[38] Fouvry E., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. scient. Éc. Norm. Sup., 31:1 (1998), 93–130 | MR | Zbl

[39] Bourgain J., “More on the sum -product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1 (2005), 1–32 | MR | Zbl

[40] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | MR | Zbl

[41] Baker R.C., “Kloosterman sums with prime variable”, Acta Arith., 152:4 (2012), 351–372 | MR

[42] Bourgain J., Garaev M.Z., “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. RAN. Ser. Mat., 78:4 (2014), 656–707 | MR | Zbl

[43] Korolev M.A., “On non-linear Kloosterman sum”, Chebyshevskii Sb., 17:1 (2016), 140–147 | MR | Zbl

[44] Korolev M.A., “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | MR | Zbl

[45] Korolev M.A., “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Mat. Zametki, 103:5 (2018), 720–729 | MR | Zbl

[46] Karatsuba A.A., “Weighted character sums”, Izv. Math., 64:2 (2000), 249–263 | MR | Zbl

[47] Karatsuba A.A., “A certain arithmetic sum”, Soviet Math. Dokl., 12 (1971), 1172–1174 | MR | Zbl

[48] Ayyad A., Cochrane N., Zheng Z., “The congruence $x_{1}x_{2}\equiv x_{3}x_{4}(\mod p)$, the equation $x_{1}x_{2}=x_{3}x_{4}$, and mean value of character sums”, J. Number Theory, 59 (1996), 398–413 | MR | Zbl

[49] Karatsuba A.A., Basic Analytic Number Theory, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | MR | Zbl