Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a13, author = {S. A. Iskhokov and I. A. Yakushev}, title = {On solvability of variational {Dirichlet} problem for a class of degenerate elliptic operators}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {164--182}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a13/} }
TY - JOUR AU - S. A. Iskhokov AU - I. A. Yakushev TI - On solvability of variational Dirichlet problem for a class of degenerate elliptic operators JO - Čebyševskij sbornik PY - 2018 SP - 164 EP - 182 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a13/ LA - ru ID - CHEB_2018_19_3_a13 ER -
S. A. Iskhokov; I. A. Yakushev. On solvability of variational Dirichlet problem for a class of degenerate elliptic operators. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 164-182. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a13/
[1] S. M. Nikol'skii, “A variational problem for an equation of elliptic type with degeneration on the boundary”, Proceedings of the Steklov Institute of Mathematics, 150 (1981), 227–254 | MR
[2] P. I. Lizorkin, S. M. Nikol'skii, “Coercive properties of elliptic equations with degeneration. Variational method”, Proc. Steklov Inst. Math., 157 (1983), 95–125 | MR | Zbl | Zbl
[3] P. I. Lizorkin, S. M. Nikol'skii, “Coercive properties of an elliptic equation with degeneration and a generalized right-hand side”, Proc. Steklov Inst. Math., 161 (1984), 171–198 | MR | Zbl | Zbl
[4] B. L. Baidel'dinov, “An analogue of the first boundary value problem for elliptic equations with degeneration. The method of bilinear forms”, Proceedings of the Steklov Institute of Mathematics, 170 (1987), 1–10 | MR
[5] P. I. Lizorkin, “On the theory of degenerate elliptic equations”, Proceedings of the Steklov Institute of Mathematics, 1987, 257–274 | MR | Zbl
[6] N. V. Miroshin, “The variational Dirichlet problem for an elliptic operator that is degenerate on the boundary”, Differential Equations, 24:3 (1988), 323–329 | MR | MR | Zbl
[7] S. M. Nikolskii, P. I. Lizorkin, N. V. Miroshin, “Weighted functional spaces and their application to investigation of boundary value problems for degenerate elliptic equations”, Soviet Math. (Izv. VUZ), 32:8 (1988), 1–40 | MR
[8] S. A. Iskhokov, A. Ya. Kuzhmuratov, “On the variational Dirichlet problem for degenerate elliptic operators”, Doklady Mathematics, 2005, no. 1, 512–515 | MR | MR | Zbl
[9] K. Kh. Boimatov, “The generalized Dirichlet problem for systems of second-order differential equations”, Russian Acad. Sci. Dokl. Math., 46:3 (1993), 403–409 | MR | MR
[10] K. Kh. Boimatov, “The generalized Dirichlet problem associated with a noncoercive bilinear form”, Russian Acad. Sci. Dokl. Math., 47:3 (1993), 455–463 | MR
[11] S. A. Iskhokov, “On the smoothness of a solutions of the generalized Dirichlet problem and the eigenvalue problem for differential operators generated by noncoercive bilinear forms”, Doklady Mathematics, 51:3 (1995), 323–325 | MR | Zbl
[12] K. Kh. Boimatov, S. A. Iskhokov, “On the solvability and smoothness of a solution of the variational Dirichlet problem associated with a noncoercive bilinear form”, Proceedings of the Steklov Institute of Mathematics, 214 (1996), 101–127 | MR | Zbl
[13] S. A. Iskhokov, M. G. Gadoev, T. Konstantinova, “Variational Dirichlet problem for degenerate elliptic operators generated by noncoercive forms”, Doklady Mathematics, 91:3, 255–258 | DOI | MR | MR | Zbl
[14] N. V. Miroshin, “A generalized Dirichlet problem for a certain class of elliptic differential operators that are degenerate on the boundary of the domain. Some spectral properties”, Differ. Uravn., 12:6 (1976), 1099–1111 | MR | Zbl
[15] T. Kato, Perturbation theory of linear operators, Springer-Verlag, 1967, 592 pp. | MR
[16] I. Ts. Gokhberg, M. G. Krein, Introduction to the theory of non-selfadgoint linear operators, Nauka, M., 1965, 448 pp.