Another application of Linnik dispersion method
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\alpha_m$ and $\beta_n$ be two sequences of real numbers supported on $[M, 2M]$ and $[N, 2N]$ with $M = X^{1/2 - \delta}$ and $N = X^{1/2 + \delta}$. We show that there exists a $\delta_0 > 0$ such that the multiplicative convolution of $\alpha_m$ and $\beta_n$ has exponent of distribution $\frac{1}{2} + \delta-\varepsilon$ (in a weak sense) as long as $0 \leq \delta \delta_0$, the sequence $\beta_n$ is Siegel-Walfisz and both sequences $\alpha_m$ and $\beta_n$ are bounded above by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums. The proof relies crucially on Linnik's dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.
Keywords:
equidistribution in arithmetic progressions, dispersion method.
@article{CHEB_2018_19_3_a12,
author = {\'Etienne Fouvry and Maksym Radziwi{\l}{\l}},
title = {Another application of {Linnik} dispersion method},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {148--163},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/}
}
Étienne Fouvry; Maksym Radziwiłł. Another application of Linnik dispersion method. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/