Another application of Linnik dispersion method
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha_m$ and $\beta_n$ be two sequences of real numbers supported on $[M, 2M]$ and $[N, 2N]$ with $M = X^{1/2 - \delta}$ and $N = X^{1/2 + \delta}$. We show that there exists a $\delta_0 > 0$ such that the multiplicative convolution of $\alpha_m$ and $\beta_n$ has exponent of distribution $\frac{1}{2} + \delta-\varepsilon$ (in a weak sense) as long as $0 \leq \delta \delta_0$, the sequence $\beta_n$ is Siegel-Walfisz and both sequences $\alpha_m$ and $\beta_n$ are bounded above by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums. The proof relies crucially on Linnik's dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.
Keywords: equidistribution in arithmetic progressions, dispersion method.
@article{CHEB_2018_19_3_a12,
     author = {\'Etienne Fouvry and Maksym Radziwi{\l}{\l}},
     title = {Another application of {Linnik} dispersion method},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {148--163},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/}
}
TY  - JOUR
AU  - Étienne Fouvry
AU  - Maksym Radziwiłł
TI  - Another application of Linnik dispersion method
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 148
EP  - 163
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/
LA  - en
ID  - CHEB_2018_19_3_a12
ER  - 
%0 Journal Article
%A Étienne Fouvry
%A Maksym Radziwiłł
%T Another application of Linnik dispersion method
%J Čebyševskij sbornik
%D 2018
%P 148-163
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/
%G en
%F CHEB_2018_19_3_a12
Étienne Fouvry; Maksym Radziwiłł. Another application of Linnik dispersion method. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/

[1] S. Bettin, V. Chandee, “Trilinear forms with Kloosterman fractions”, Adv. Math., 328 (2018), 1234–1262 | MR | Zbl

[2] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Avec une sommaire en anglais, Astérisque, 18, Société Mathématique de France, Paris, 1974 | MR

[3] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math., 156:3–4 (1986), 203–251 | MR | Zbl

[4] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli. II”, Math. Ann., 277:3 (1987), 361–393 | MR | Zbl

[5] W. Castryck, É. Fouvry, G. Harcos, E. Kowalski, P. Michel, P. Nelson, E. Paldi, J. Pintz, A. V. Sutherland, T. Tao, X-F. Xie, “New equidistribution estimates of Zhang type”, Algebra Number Theory, 8:9 (2014), 2067–2199 | MR | Zbl

[6] S. Drappeau, “Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method”, Proc. Lond. Math. Soc. (3), 114:4 (2017), 684–732 | MR | Zbl

[7] W. Duke, J. Friedlander, H. Iwaniec, “Bilinear forms with Kloosterman fractions”, Invent. Math., 128:1 (1997), 23–43 | MR | Zbl

[8] É. Fouvry, “Répartition des suites dans les progressions arithmétiques”, Acta Arith., 41:4 (1982), 359–382 | MR | Zbl

[9] É. Fouvry, “Autour du théorème de Bombieri-Vinogradov”, Acta Math., 152:3–4 (1984), 219–244 | MR | Zbl

[10] É. Fouvry, “Sur le problème des diviseurs de Titchmarsh”, J. Reine Angew. Math., 357 (1985), 51–76 | MR | Zbl

[11] É. Fouvry, “Autour du théorème de Bombieri-Vinogradov. II”, Ann. Sci. École Norm. Sup. (4), 20:4 (1987), 617–640 | MR | Zbl

[12] É. Fouvry, M. Radziwiłł, Level of distribution of unbalanced sequences, preprint, 2018

[13] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[14] Ju. V. Linnik, The dispersion method in binary additive problems, Translated by S. Schuur, American Mathematical Society, Providence, RI, 1963 | MR | Zbl

[15] T. Tao, “The Elliott-Halberstam conjecture implies the {V}inogradov least quadratic nonresidue conjecture”, Algebra Number Theory, 9:4 (2015), 1005–1034 | MR | Zbl

[16] Y. Zhang, “Bounded gaps between primes”, Ann. of Math. (2), 179:3 (2014), 1121–1174 | MR | Zbl