Another application of Linnik dispersion method
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha_m$ and $\beta_n$ be two sequences of real numbers supported on $[M, 2M]$ and $[N, 2N]$ with $M = X^{1/2 - \delta}$ and $N = X^{1/2 + \delta}$. We show that there exists a $\delta_0 > 0$ such that the multiplicative convolution of $\alpha_m$ and $\beta_n$ has exponent of distribution $\frac{1}{2} + \delta-\varepsilon$ (in a weak sense) as long as $0 \leq \delta \delta_0$, the sequence $\beta_n$ is Siegel-Walfisz and both sequences $\alpha_m$ and $\beta_n$ are bounded above by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums. The proof relies crucially on Linnik's dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.
Keywords: equidistribution in arithmetic progressions, dispersion method.
@article{CHEB_2018_19_3_a12,
     author = {\'Etienne Fouvry and Maksym Radziwi{\l}{\l}},
     title = {Another application of {Linnik} dispersion method},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {148--163},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/}
}
TY  - JOUR
AU  - Étienne Fouvry
AU  - Maksym Radziwiłł
TI  - Another application of Linnik dispersion method
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 148
EP  - 163
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/
LA  - en
ID  - CHEB_2018_19_3_a12
ER  - 
%0 Journal Article
%A Étienne Fouvry
%A Maksym Radziwiłł
%T Another application of Linnik dispersion method
%J Čebyševskij sbornik
%D 2018
%P 148-163
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/
%G en
%F CHEB_2018_19_3_a12
Étienne Fouvry; Maksym Radziwiłł. Another application of Linnik dispersion method. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 148-163. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a12/