On the number of prime elements in certain monoids of natural numbers
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 123-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the number of prime elements in the monoid $M_{q, 1}$ consisting of natural numbers comparable to $1$ modulo $q$. For $q>2$, the monoid $M_{q, 1}$ is not a monoid with a unique decomposition into prime elements, since along with ordinary primes that are comparable to $1$ modulo $q$, pseudo-primes that are composite numbers fall into the number of prime elements. The case $q=3,4,6$ is distinguished from the others by the fact that pseudo-primes are the product of two primes comparable to $q-1$ modulo $q$. Thus, in this case for the set of prime elements $P(M_{q,1})$ of monoid $M_{q,1}$ the equality $P(M_{q,1})=\mathbb{P}_{q,1}\bigcup(\mathbb{P}_{q,q-1}\cdot\mathbb{P}_{q,q-1})$ is true. Since the monoid $M_{q,1}$ does not have the uniqueness of decomposition into prime elements, then the Zeta-function $$ \zeta (M_{q,1}|\alpha)=\sum_{n\in M_{q, 1}} \frac{1}{n^\alpha} $$ of the monoid $M_{q, 1}$ is not equal to the Euler product $$ P(M_{q,1}|\alpha)=\prod_{r\in P(M_{q,1})}\left (1-\frac{1}{r^\alpha}\right)^{-1}. $$ Therefore, it is not possible to study the distribution of prime elements in the monoid $M_{q, 1}$ using the analytical properties of the logarithmic derivative of the zeta function of the monoid. For completeness, the paper first studies the question of the number of composite numbers equal to the product of two primes using Chebyshev's inequalities, since this year marks the 170th anniversary of the release of the first memoir of P. L. Chebyshev about primes. Then, using the Brun-Titchmarsh inequality, we obtain an upper bound on the number of composite numbers comparable to $1$ modulo $q$ and equal to the product of two primes. The approach applied to the general case is then transferred to the case of prime elements in monoids $M_{q, 1}$ with $q=3,4,6$. In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of monoid of natural numbers, Euler product.
@article{CHEB_2018_19_2_a9,
     author = {N. N. Dobrovolsky and A. O. Kalinina and M. N. Dobrovolsky and N. M. Dobrovolsky},
     title = {On the number of prime elements in certain monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {123--141},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/}
}
TY  - JOUR
AU  - N. N. Dobrovolsky
AU  - A. O. Kalinina
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovolsky
TI  - On the number of prime elements in certain monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 123
EP  - 141
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/
LA  - ru
ID  - CHEB_2018_19_2_a9
ER  - 
%0 Journal Article
%A N. N. Dobrovolsky
%A A. O. Kalinina
%A M. N. Dobrovolsky
%A N. M. Dobrovolsky
%T On the number of prime elements in certain monoids of natural numbers
%J Čebyševskij sbornik
%D 2018
%P 123-141
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/
%G ru
%F CHEB_2018_19_2_a9
N. N. Dobrovolsky; A. O. Kalinina; M. N. Dobrovolsky; N. M. Dobrovolsky. On the number of prime elements in certain monoids of natural numbers. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 123-141. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/

[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR

[2] S. M. Voronin, Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.

[3] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR

[4] M. N. Dobrovol'skij, “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[5] N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR | Zbl

[6] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR

[7] N. N. Dobrovolsky, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1 (2018), 79–105 | DOI | MR

[8] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | DOI | MR | Zbl

[9] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl

[10] K. Prahar, Raspredelenie prostyh chisel, per. s nem., Izd-vo Mir, M., 1967, 511 pp.

[11] I. Yu. Rebrova, A. V. Kirilina, “N. M. Korobov and the theory of the hyperbolic zeta function of lattices”, Chebyshevskii sbornik, 19:2 (2018) | MR

[12] C. Hooley, Applications of seive methods to the theory of numbers, Nauka, M., 1987, 20 pp.

[13] Chebyshev P. L., Complete works, v. I–V, Izd-vo AN SSSR, M.–L., 1944–1951 | MR

[14] P. L. Chebyshev, Selected works, Izd-vo AN SSSR, M., 1955, 926 pp. | MR

[15] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[16] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl