Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a9, author = {N. N. Dobrovolsky and A. O. Kalinina and M. N. Dobrovolsky and N. M. Dobrovolsky}, title = {On the number of prime elements in certain monoids of natural numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {123--141}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/} }
TY - JOUR AU - N. N. Dobrovolsky AU - A. O. Kalinina AU - M. N. Dobrovolsky AU - N. M. Dobrovolsky TI - On the number of prime elements in certain monoids of natural numbers JO - Čebyševskij sbornik PY - 2018 SP - 123 EP - 141 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/ LA - ru ID - CHEB_2018_19_2_a9 ER -
%0 Journal Article %A N. N. Dobrovolsky %A A. O. Kalinina %A M. N. Dobrovolsky %A N. M. Dobrovolsky %T On the number of prime elements in certain monoids of natural numbers %J Čebyševskij sbornik %D 2018 %P 123-141 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/ %G ru %F CHEB_2018_19_2_a9
N. N. Dobrovolsky; A. O. Kalinina; M. N. Dobrovolsky; N. M. Dobrovolsky. On the number of prime elements in certain monoids of natural numbers. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 123-141. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a9/
[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR
[2] S. M. Voronin, Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.
[3] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR
[4] M. N. Dobrovol'skij, “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl
[5] N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR | Zbl
[6] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR
[7] N. N. Dobrovolsky, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1 (2018), 79–105 | DOI | MR
[8] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | DOI | MR | Zbl
[9] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl
[10] K. Prahar, Raspredelenie prostyh chisel, per. s nem., Izd-vo Mir, M., 1967, 511 pp.
[11] I. Yu. Rebrova, A. V. Kirilina, “N. M. Korobov and the theory of the hyperbolic zeta function of lattices”, Chebyshevskii sbornik, 19:2 (2018) | MR
[12] C. Hooley, Applications of seive methods to the theory of numbers, Nauka, M., 1987, 20 pp.
[13] Chebyshev P. L., Complete works, v. I–V, Izd-vo AN SSSR, M.–L., 1944–1951 | MR
[14] P. L. Chebyshev, Selected works, Izd-vo AN SSSR, M., 1955, 926 pp. | MR
[15] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR
[16] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl