Quasigroups and their applications
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey of results obtained within the project 0AAAA-A16-116070810025-5 and the recent joint project with Indian algebraists S.Chakrabarti, S. Gangopahyay, S. Pal and also with Russian participants V.T. Markov, A.E. Pankratiev. The aim of projects is a study of algebraic properties of finite polynomially complete quasigroups, the problem of their recognition from its Latin square and constructions of polynomially complete quasigroups of sufficiently large order. We are also interested in poly nomially complete quasigroups with no subquasigroups. There are found sufficient conditions of polynomial completeness of a quasigroups $Q$ in terms of a group $G(Q)$. For example it suffices if $G(Q)$ acts doubly transitive in $Q$. There is found a behaviour of $G(Q)$ under isotopies. It is shown that any finite quasigroup can be embedded into a polynomial complete one. The results are applied for securing an information.
Keywords: quasigroups, Latin squres, permutation groups, transitivity.
@article{CHEB_2018_19_2_a8,
     author = {V. A. Artamonov},
     title = {Quasigroups and their applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a8/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Quasigroups and their applications
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 111
EP  - 122
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a8/
LA  - ru
ID  - CHEB_2018_19_2_a8
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Quasigroups and their applications
%J Čebyševskij sbornik
%D 2018
%P 111-122
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a8/
%G ru
%F CHEB_2018_19_2_a8
V. A. Artamonov. Quasigroups and their applications. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 111-122. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a8/

[1] J. Hagemann, C. Herrmann, “Arithmetically locally equational classes and representation of partial functions”, Universal algebra, Colloq. Math. Soc. Janos Bolyai, 29, Estergom, Hungary, 1982, 345–360 | MR | Zbl

[2] G. Horvath, C. L. Nehaniv, Cs. Szabo, “An assertion concerning functionally complete algebras and NP-completeness”, Theoret. Comput. Sci., 407 (2008), 591–595 | DOI | MR | Zbl

[3] T. Ihringer, “On multiplication groups of quasigroups”, European J. Combin., 5 (1984), 137–141 | DOI | MR | Zbl

[4] V. A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S. K. Pal, “On Latin squares of polynomially complete quasigroups and quasigroups generated by shifts”, Quasigroups and related systems, 21 (2013), 201–214 | MR

[5] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterization of Polynomially Complete Quasigroups based on Latin Squares for Cryptographic Transformations”, Discrete Applied Mathematics, 2016, 5–17 | DOI | MR | Zbl

[6] V. A. Artamonov S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups and related systems, 25 (2017), 1–19 | MR | Zbl

[7] M. M. Glukhov, “On applications of quasigroups in cryptography”, Appl. Discrete Math., 2 (2008), 28–32 | DOI

[8] T. Kepka, “A note on simple quasigroups”, Acta Univ. Carolin. Math. Phys., 19:2 (1978), 59–60 | MR | Zbl

[9] O. Grošek, P. Horák, “On quasigroups with few associative triples”, Des. Codes Cryptogr., 64 (2012), 221–227 | DOI | MR | Zbl

[10] G. B. Belyavskaya, A. H. Tabarov, “A characterization of linear and a linear quasigroups”, Discrete Math., 4:2 (1992), 142–147 | MR | Zbl